Cytochrome P450 (CYP) enzymes constitute an essential xenobiotic metabolizing system that regulates the elimination of lipophilic compounds from the body. Convenient and affordable assays for CYP enzymes are important for assessing these metabolic pathways. In this study, 10 novel profluorescent coumarin derivatives with various substitutions at carbons 3, 6 and 7 were developed. Molecular modeling indicated that 3-phenylcoumarin offers an excellent scaffold for the development of selective substrate compounds for various human CYP forms, as they could be metabolized to fluorescent 7-hydroxycoumarin derivatives. Oxidation of profluorescent coumarin derivatives to fluorescent metabolites by 13 important human liver xenobiotic-metabolizing CYP forms was determined by enzyme kinetic assays. Four of the coumarin derivatives were converted to fluorescent metabolites by CYP1 family enzymes, with 6-methoxy-3-(4-trifluoromethylphenyl)coumarin being oxidized selectively by CYP1A2 in human liver microsomes. Another set of four compounds were metabolized by CYP2A6 and CYP1 enzymes. 7-Methoxy-3-(3-methoxyphenyl)coumarin was oxidized efficiently by CYP2C19 and CYP2D6 in a non-selective fashion. The advantages of the novel substrates were (1) an excellent signal-to-background ratio, (2) selectivity for CYP1 forms, and (3) convenient multiwell plate measurement, allowing for precise determination of potential inhibitors of important human hepatic forms CYP1A2, CYP2C19 and CYP2D6.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00498254.2018.1530399 | DOI Listing |
Chem Commun (Camb)
January 2025
College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
Natural coumarins represent a diverse group of secondary metabolites with a wide range of biological activities. However, their specific molecular targets have remained largely unexplored. Employing chemical proteomics, a comprehensive analysis of the protein targets of the natural coumarin fraxetin has been conducted.
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Department of Pharmacy, The People's Hospital of Hezhou, Hezhou, China.
Rationale: Warfarin is the most commonly used drug in patients with mechanical valve replacement. Acute liver damage after warfarin is rare but potentially harmful. We present a case of warfarin-induced gastrointestinal bleeding with liver injury, pharmacy monitoring, and its therapy.
View Article and Find Full Text PDF3 Biotech
February 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014 India.
Unlabelled: Coumarin derivatives are one of the naturally occurring bioactive molecule. Dihydropyrano coumarins are one of the medicinally important derivatives of coumarin which have been reported to exhibit various bioactivity. However, there are no reports on their antihyperglycemic activities.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Agricultural Extension Directorate, MAAR Damascus Syria.
Coumarins, a group of naturally occurring compounds, have been reported to demonstrate anticancer potential. These substances, distinguished by their combined benzene and α-pyrone rings, have been demonstrated to impact multiple cellular mechanisms essential for the initiation and advancement of cancer. These agents work in different ways that prevent different tumor cells from growing, spreading, and increasing.
View Article and Find Full Text PDFSci Rep
January 2025
Czech Agrifood Research Center, Drnovska 507/73, CZ-16100, Prague 6, Czech Republic.
Despite the widespread use of anticoagulant rodenticides in baits for controlling commensal rodent pests, their application is problematic due to secondary intoxication and increasing resistance. In contrast to studies on Western European house mice (Mus musculus domesticus), few resistance studies have focused on Eastern European house mice (M. musculus musculus), which have a western distribution boundary in the Czech Republic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!