Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We study the structures and the mechanical properties of nanocomposite networks consisting of disk-shaped particles and polymers by a coarse-grained molecular dynamics simulation. The disk-shaped particles and the polymers form tightly cross-linked network structures by the polymer adsorption on the disk-shaped particles and show high mechanical strength. We confirm the significance of the high polymerization degree for the large fracture elongations. Under the uniaxial elongation, at low elongation ratios, the networks maintain the cross-linked structures and indicate the sharp increase of the stress with the elongation. At large elongation ratios, the number of bridge chains decreases by the peeling of the adsorbed polymers from the disk-shaped particles. The decline of the bridge chains suppresses the increment of the stress. The orientation of the disk-shaped particles saturates prior to that of the polymers because of the slow orientation of the non-bridge chains. These results are consistent with reported experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm01437j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!