Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding cellular response to mechanical forces is immensely important for a plethora of biological processes. Focal adhesions are multimolecular protein assemblies that connect the cell to the extracellular matrix and play a pivotal role in cell mechanosensing. Under time-varying stretches, focal adhesions dynamically reorganize and reorient and as a result, regulate the response of cells in tissues. Here I present a simple theoretical model based on, to my knowledge, a novel approach in the understanding of stretch-sensitive bond association and dissociation processes together with the elasticity of the cell-substrate system to predict the growth, stability, and the orientation of focal adhesions in the presence of static as well as cyclically varying stretches. The model agrees well with several experimental observations; most importantly, it explains the puzzling observations of parallel orientation of focal adhesions under static stretch and nearly perpendicular orientation in response to fast varying cyclic stretch.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123675 | PMC |
http://dx.doi.org/10.1038/s42003-018-0084-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!