Mouse is the predominant experimental model for the study of human disease due, in part, to phylogenetic relationship, ease of breeding, and the availability of molecular tools for genetic manipulation. Advances in genome-editing methodologies, such as CRISPR-Cas9, enable the rapid production of new transgenic mouse strains, necessitating complementary high-throughput and systematic phenotyping technologies. In contrast to traditional protein phenotyping techniques, multiple reaction monitoring (MRM) mass spectrometry can be highly multiplexed without forgoing specificity or quantitative precision. Here we present MRM assays for the quantitation of 500 proteins and subsequently determine reference concentration values for plasma proteins across five laboratory mouse strains that are typically used in biomedical research, revealing inter-strain and intra-strain phenotypic differences. These 500 MRM assays will have a broad range of research applications including high-throughput phenotypic validation of novel transgenic mice, identification of candidate biomarkers, and general research applications requiring multiplexed and precise protein quantification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123701PMC
http://dx.doi.org/10.1038/s42003-018-0087-6DOI Listing

Publication Analysis

Top Keywords

mouse strains
12
laboratory mouse
8
multiple reaction
8
reaction monitoring
8
mass spectrometry
8
mrm assays
8
molecular phenotyping
4
phenotyping laboratory
4
mouse
4
strains 500
4

Similar Publications

Bacterial infections pose a serious threat to human health. For many years, there has been a search for materials that would inhibit their development. It was decided to take a closer look at various elastomeric materials with the addition of chitosan.

View Article and Find Full Text PDF

The contribution of sex hormones to cardiovascular disease, including arterial stiffness, is established; however, the role of sex chromosome interaction with sex hormones, particularly in women, is lagging. Arterial structural stiffness depends on the intrinsic properties and transmural wall geometry that comprise a network of cells and extracellular matrix (ECM) proteins expressed in a sex-dependent manner. In this study, we used four-core genotype (FCG) mice to determine the relative contribution of sex hormones versus sex chromosomes or their interaction with arterial structural stiffness.

View Article and Find Full Text PDF

Foremost in the design of new β-lactamase inhibitors (BLIs) are the boronic acid transition state inhibitors (BATSIs). Two highly potent BATSIs being developed are S02030 and MB076 strategically designed to be active against cephalosporinases and carbapenemases, especially KPC. When combined with cefepime, S02030 and MB076 demonstrated potent antimicrobial activity against laboratory and clinical strains of expressing a variety of class A and class C β-lactamases, including and .

View Article and Find Full Text PDF

The chick embryo chorioallantoic membrane (CAM) tumor model is a valuable preclinical model for studying the tumor-colonizing process of serovar Typhimurium. It offers advantages such as cost-effectiveness, rapid turnaround, reduced engraftment issues, and ease of observation. In this study, we explored and validated the applicability of the partially immune-deficient CAM tumor model.

View Article and Find Full Text PDF

AIP56, an AB toxin secreted by subsp. , has tropism for myeloid cells.

Front Immunol

January 2025

Fish Immunology and Vaccinology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.

Introduction: The AB-type toxin AIP56 is a key virulence factor of Photobacterium damselae subsp. piscicida (Phdp), inducing apoptosis in fish immune cells. The discovery of AIP56-like and AIP56-related toxins in diverse organisms, including human-associated Vibrio strains, highlights the evolutionary conservation of this toxin family, suggesting that AIP56 and its homologs may share conserved receptors across species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!