The interaction between brown bears () and Pacific salmon ( spp.) is important to the population dynamics of both species and a celebrated example of consumer-mediated nutrient transport. Yet, much of the site-specific information we have about the bears in this relationship comes from observations at a few highly visible but unrepresentative locations and a small number of radio-telemetry studies. Consequently, our understanding of brown bear abundance and behavior at more cryptic locations where they commonly feed on salmon, including small spawning streams, remains limited. We employed a noninvasive genetic approach (barbed wire hair snares) over four summers (2012-2015) to document patterns of brown bear abundance and movement among six spawning streams for sockeye salmon, , in southwestern Alaska. The streams were grouped into two trios on opposite sides of Lake Aleknagik. Thus, we predicted that most bears would forage within only one trio during the spawning season because of the energetic costs associated with swimming between them or traveling around the lake and show fidelity to particular trios across years because of the benefits of familiarity with local salmon dynamics and stream characteristics. Huggins closed-capture models based on encounter histories from genotyped hair samples revealed that as many as 41 individuals visited single streams during the annual 6-week sampling season. Bears also moved freely among trios of streams but rarely moved between these putative foraging neighborhoods, either during or between years. By implication, even small salmon spawning streams can serve as important resources for brown bears, and consistent use of stream neighborhoods by certain bears may play an important role in spatially structuring coastal bear populations. Our findings also underscore the efficacy of noninvasive hair snagging and genetic analysis for examining bear abundance and movements at relatively fine spatial and temporal scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157690 | PMC |
http://dx.doi.org/10.1002/ece3.4431 | DOI Listing |
Glob Chang Biol
January 2025
Biotechnical Faculty, Department of Biology, University of Ljubljana, Ljubljana, Slovenia.
Three-quarters of the planet's land surface has been altered by humans, with consequences for animal ecology, movements and related ecosystem functioning. Species often occupy wide geographical ranges with contrasting human disturbance and environmental conditions, yet, limited data availability across species' ranges has constrained our understanding of how human pressure and resource availability jointly shape intraspecific variation of animal space use. Leveraging a unique dataset of 758 annual GPS movement trajectories from 375 brown bears (Ursus arctos) across the species' range in Europe, we investigated the effects of human pressure (i.
View Article and Find Full Text PDFHibernating brown bears, due to a drastic reduction in metabolic rate, show only moderate muscle wasting. Here, we evaluate if ATPase activity of resting skeletal muscle myosin can contribute to this energy sparing. By analyzing single muscle fibers taken from the same bears, either during hibernation or in summer, we find that fibers from hibernating bears have a mild decline in force production and a significant reduction in ATPase activity.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece.
Habitat fragmentation poses a significant threat to the existence and reproduction of large carnivores, such as brown bears, as it affects the genetic connectivity of populations and, consequently, their long-term viability. Understanding the genetic makeup and dispersal patterns in areas where brown bears live is crucial for developing effective conservation plans and promoting human-brown bear coexistence. In this study, 214 hair samples were collected non-invasively from brown bears and were genetically analyzed using fifteen specific microsatellite loci to shed light on the genetic status and demography of a sub-population residing in Central Greece (Trikala-Meteora area).
View Article and Find Full Text PDFAnabropsis (Apteranabropsis) brevistria sp. nov. is described and illustrated for the first time and can be identified by the longitudinal yellowish brown stripe on the pronotal disc and the morphology of the male subgenital plate which bears roughly a V-shaped concavity.
View Article and Find Full Text PDFMov Ecol
December 2024
U.S. National Park Service, 1000 US Hwy 36, Estes Park, CO, 80517, USA.
Background: Access to salmon resources is vital to coastal brown bear (Ursus arctos) populations. Deciphering patterns of travel allowing coastal brown bears to exploit salmon resources dispersed across the landscape is critical to understanding their behavioral ecology, maintaining landscape connectivity for the species, and developing conservation strategies.
Methods: We modeled travel behavior of 51 radio-collared female Kodiak brown bears (U.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!