Rapid food product analysis is of great interest for quality control and assurance during the production process. Conventional quality control protocols require time and labor intensive sample preparation for analysis by state-of-the-art analytical methods. To reduce overall cost and facilitate rapid qualitative assessments, food products need to be tested with minimal sample preparation. We present a novel and simple method for assessing food product compositions by mass spectrometry using a novel surface acoustic wave nebulization method. This method provides significant advantages over conventional methods requiring no pumps, capillaries, or additional chemicals to enhance ionization for mass spectrometric analysis. In addition, the surface acoustic wave nebulization - mass spectrometry method is ideal for rapid analysis and to investigate certain compounds by using the mass spectra as a type of species-specific fingerprint analysis. We present for the first time surface acoustic wave nebulization generated mass spectra of a variety of fermented food products from a small selection of vinegars, wines, and beers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157634PMC
http://dx.doi.org/10.1007/s12161-018-1232-zDOI Listing

Publication Analysis

Top Keywords

surface acoustic
16
acoustic wave
16
wave nebulization
16
food product
12
mass spectrometry
12
rapid food
8
product analysis
8
quality control
8
sample preparation
8
food products
8

Similar Publications

Coating synthetic nanoparticles (NPs) with lipid membranes is a promising approach to enhance the performance of nanomaterials in various biological applications, including therapeutic delivery to target organs. Current methods for achieving this coating often rely on bulk approaches which can result in low efficiency and poor reproducibility. Continuous processes coupled with quality control represent an attractive strategy to manufacture products with consistent attributes and high yields.

View Article and Find Full Text PDF

Putting piezoelectric sensors into Fano resonances.

Microsyst Nanoeng

December 2024

Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China.

Piezoelectric resonance sensors are essential to many diverse applications associated with chemical and biological sensing. In general, they rely on continuously detecting the resonant frequency shift of piezoelectric resonators due to analytes accreting on their surfaces in vacuum, gas or fluid. Resolving the small analyte changes requires the resonators with a high quality factor.

View Article and Find Full Text PDF

Sensitive detection of incident acoustic waves over a broad frequency band offers a faithful representation of photoacoustic pressure transients of biological microstructures. Here, we propose a plasmon waveguide resonance sensor for responding to the photoacoustic impulses. By sequentially depositing Au, MgF, and SiO films on a coverslip, a composite waveguide layer produces a tightly confined optical evanescent field at the SiO-water interface with extremely strong electric field intensity, enabling the retrieval of photoacoustic signals with an estimated noise-equivalent-pressure (NEP) sensitivity of ∼92 Pa and a -6-dB bandwidth of ∼208 MHz.

View Article and Find Full Text PDF

Investigation of sound pressure waveforms helps the selection of appropriate metrics to evaluate their effects on marine life in relation to noise thresholds. As marine animals move farther away from a sound source, the temporal characteristics of sound pressure may be influenced by interactions with the sediment and the sea surface. Sound pressure kurtosis and root-mean-square (rms) sound pressure are quantitative characteristics that depend on the shape of a sound pulse, with kurtosis related to the qualitative characteristic "impulsiveness.

View Article and Find Full Text PDF

With their unique ecosystems and evolutionary dynamics, small islands offer fascinating contexts to explore animal diversity. Island bats are key players in maintaining ecological balance. However, their populations are threatened worldwide, necessitating comprehensive research and conservation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!