Modulation of Dormancy and Growth Responses in Reproductive Buds of Temperate Trees.

Front Plant Sci

Centre of Citriculture and Plant Production, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain.

Published: September 2018

During autumn perennial trees cease growth and form structures called buds in order to protect meristems from the unfavorable environmental conditions, including low temperature and desiccation. In addition to increased tolerance to these abiotic stresses, reproductive buds modulate developmental programs leading to dormancy induction to avoid premature growth resumption, and flowering pathways. Stress tolerance, dormancy, and flowering processes are thus physically and temporarily restricted to a bud, and consequently forced to interact at the regulatory level. We review recent genomic, genetic, and molecular contributions to the knowledge of these three processes in trees, highlighting the role of epigenetic modifications, phytohormones, and common regulatory factors. Finally, we emphasize the utility of transcriptomic approaches for the identification of key structural and regulatory genes involved in bud processes, illustrated with our own experience using peach as a model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146825PMC
http://dx.doi.org/10.3389/fpls.2018.01368DOI Listing

Publication Analysis

Top Keywords

reproductive buds
8
modulation dormancy
4
dormancy growth
4
growth responses
4
responses reproductive
4
buds temperate
4
temperate trees
4
trees autumn
4
autumn perennial
4
perennial trees
4

Similar Publications

Boron controls apical dominance in Pea (Pisum sativum) via promoting polar auxin transport.

Physiol Plant

January 2025

International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China.

Plant architecture and subsequent productivity are determined by the shoot apical dominance, which is disturbed by the deficiency of boron, one of the essential trace elements for plant growth and reproduction. However, the mechanism by which B controls shoot apical dominance or axillary bud outgrows under B deficiency is still unclear. This work aimed to investigate the mechanistic basis of this process, with focus on the interaction between B and polar auxin transport.

View Article and Find Full Text PDF

Natural history of the hyperdominant tree, Pentaclethra macroloba (Willd.) Kuntze, in the Amazon River estuary.

Braz J Biol

January 2025

Instituto Nacional de Pesquisas da Amazônia - INPA, Programa de Pós-graduação em Ecologia - PPGEco, Manaus, AM, Brasil.

Pentaclethra macroloba is a hyperdominant species with multiple uses in the Amazon. This species tolerates varying flood amplitudes, however the effect of flood topographic gradient on its ecophysiology remains unclear. We want to know if individuals from the high (10 trees) and low (20 trees) várzea show distinct phenological patterns as a function of the flood gradient, as well as their colonization strategies and their seed predators.

View Article and Find Full Text PDF

Transcriptome and phytohormone profiling of stamen and pistil in Brassica napus under boron deficiency.

Plant Physiol Biochem

December 2024

National Key Laboratory of Crop Genetic Improvement, Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China. Electronic address:

Plant reproduction is a fundamental requirement for plants to sustain genetic inheritance. In the perspective of plant nutrition, such process is strongly influenced by boron deficiency (-B) and as documented about a century ago. To date, little is known about the mechanism of boron deficiency-induced fertility reduction.

View Article and Find Full Text PDF

Shrub encroachment can alter the structure and function of grassland ecosystems, leading to their degradation. Therefore, population regeneration dynamics after shrub encroachment on the influence of grassland should not be ignored. , as a pioneer species, has significantly encroached with large areas on the Qinghai-Tibetan Plateau (QTP) due to climate change and over-grazing.

View Article and Find Full Text PDF

Impact of diverse exogenous hormones on parthenocarpy, yield, and quality of pepino () in the Qinghai-Tibet plateau's natural conditions.

Physiol Mol Biol Plants

November 2024

Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Qinghai University, Xining, 810016 China.

Unlabelled: Pepino (), native to the Andes Mountains, requires exogenous hormones in its brief frost-free plateau environment to induce parthenocarpy and ensure yield.The effects of different plant growth regulators and application methods on pepino's growth, yield, and fruit quality were analyzed. Results showed that exogenous plant growth regulators had significant effects on various plant traits For instance, plant height decreased by 43.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!