Aqueous Phase Separation Behavior of Highly Syndiotactic, High Molecular Weight Polymers with Densely Packed Hydroxy-Containing Side Groups.

Macromolecules

Van 't Hoff Institute for Molecular Sciences (HIMS), Department of Homogeneous and Supramolecular Catalysis, Universiteit van Amsterdam, P.O. Box 94720, 1090 GS Amsterdam, Netherlands.

Published: September 2018

Herein we describe the Rh-catalyzed C1 polymerization of silyl-protected diazoacetates of the general formula HC(=N)C(=O)O(CH) OSiR, where = 2-5. After polymerization and subsequent desilylation, polymers bearing a hydroxy-containing side group on backbone carbon are obtained. The molecular weight of the desired polymers can be controlled via chain transfer with methanol during the polymerization. The produced polymers are compared to atactic analogues formed by [(η-CH)PdCl]-catalyzed polymerization of silyl-protected diazoacetates with the same general formula. While the polymers produced by the Rh and Pd catalysts have the same hydrophilic/hydrophobic balance, the stereoregularity of the polymers formed by the Rh catalyst was found to be of influence on the thermoresponsive behavior of the polymer. The effect of this stereoregularity on the thermoresponsive phase separation behavior of the produced polymers in aqueous solution was investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158683PMC
http://dx.doi.org/10.1021/acs.macromol.8b01150DOI Listing

Publication Analysis

Top Keywords

phase separation
8
separation behavior
8
molecular weight
8
hydroxy-containing side
8
polymerization silyl-protected
8
silyl-protected diazoacetates
8
diazoacetates general
8
general formula
8
produced polymers
8
polymers
7

Similar Publications

Background: A didelphic uterus represents a unique and infrequent congenital condition in which a woman possesses two distinct uteri, each with its own cervix. This anomaly arises due to partial or incomplete merging of the Müllerian ducts during the developmental stages in the womb. Accounting for uterine malformations, a didelphic uterus is a relatively rare condition, affecting approximately 0.

View Article and Find Full Text PDF

Protein quality control machinery: regulators of condensate architecture and functionality.

Trends Biochem Sci

January 2025

Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA. Electronic address:

Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates.

View Article and Find Full Text PDF

The RNA-binding properties of Annexins.

J Mol Biol

January 2025

Elettra Sincrotrone Trieste, Italy; The Wohl Institute, King's College London, 5 Cutcombe Rd, SW59RT London, UK. Electronic address:

Annexins are a family of calcium-dependent phospholipid-binding proteins involved in crucial cellular processes such as cell division, calcium signaling, vesicle trafficking, membrane repair, and apoptosis. In addition to these properties, Annexins have also been shown to bind RNA, although this function is not universally recognized. In the attempt to clarify this important issue, we employed an integrated combination of experimental and computational approaches.

View Article and Find Full Text PDF

Constructing coral reef-like imprinted structure on molecularly imprinted nanocomposite membranes based on nanospheres with hydrophilic multicores for selective separation of acteoside.

J Chromatogr A

December 2024

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, PR China. Electronic address:

Molecularly imprinted nanocomposite membranes (MINMs) have shown great superiority in selective separation of acteoside (ACT) from phenylethanoid glycosides in Cistanche tubulosa. Herein, ACT-based MINMs (A-MINMs) with coral reef-like imprinted structure were proposed and developed for specifically separating ACT molecules. The nanospheres with hydrophilic multicores (NHMs) were introduced into polyvinylidene fluoride (PVDF) powders to obtain NHMs@PVDF membranes by a phase inversion method.

View Article and Find Full Text PDF

Eco-friendly synthesis of CuO/g-C₃N₄/Fe₃O₄ nanocomposites for efficient magnetic micro-solid phase extraction (M-μ-SPE) of trace cadmium from food and water samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.

In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!