Bisphosphonates reduce biomaterial turnover in healing of critical-size rat femoral defects.

J Orthop Surg (Hong Kong)

1 Bone Biology & Orthopaedic Research, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.

Published: September 2019

AI Article Synopsis

Article Abstract

Treatment of osteoporotic patients with bisphosphonates (BPs) preserves bone mass and microarchitecture. The high prescription rate of the drugs brings about increases in the numbers of fractures and bone defects requiring surgical interventions in these patients. Currently, critical-size defects are filled with biomaterials and healing is supported with bone morphogenetic proteins (BMP). It is hypothesized that BPs interfere with biomaterial turnover during BMP-supported repair of defects filled with β-tricalcium phosphate (βTCP) ceramics. To test this hypothesis, retired breeder rats were ovariectomized ( OVX). After 8 weeks, treatment with alendronate (ALN) commenced. Five weeks later, 6 mm diaphyseal femoral defects were applied and stabilized with locking plates. βTCP cylinders loaded with 1 μg and 10 μg BMP2, 10 μg L51P, an inhibitor of BMP antagonists and 1 μg BMP2/10 μg L51P were fitted into the defects. Femora were collected 16 weeks post-implantation. In groups receiving calcium phosphate implants loaded with 10 μg BMP2 and 1 μg BMP2/10 μg L51P, the volume of bone was increased and βTCP was decreased compared to groups receiving implants with 1 μg BMP2 and 10 μg L51P. Treatment of animals with ALN caused a decrease in βTCP turnover. The results corroborate the synergistic effects of BMP2 and L51P on bone augmentation. Administration of ALN caused a reduction in implant turnover, demonstrating the dependence of βTCP removal on osteoclast activity, rather than on chemical solubility. Based on these data, it is suggested that in patients treated with BPs, healing of biomaterial-filled bone defects may be impaired because of the failure to remove the implant and its replacement by authentic bone.

Download full-text PDF

Source
http://dx.doi.org/10.1177/2309499018802487DOI Listing

Publication Analysis

Top Keywords

μg l51p
16
μg bmp2
12
bmp2 μg
12
μg
10
biomaterial turnover
8
femoral defects
8
bone defects
8
defects filled
8
loaded μg
8
μg bmp2/10
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!