Circadian rhythms are physiological and behavioral processes that exhibit a 24-hr cycle. These daily rhythms are essential for living organisms to align their behavior and physiology with the environment to increase the likelihood of survival. In mammals, circadian rhythms synchronize with the environment primarily by the suprachiasmatic nucleus, a hypothalamic brain region that integrates exogenous and endogenous timing cues. Sex steroid hormones, including estrogens, are thought to modulate sexually dimorphic behaviors through developmental programming of the brain (i.e., organization), as well as acute receptor signaling during adulthood (i.e., activation). Importantly, there are known sex differences in the expression of circadian locomotor activity and molecular organization of the suprachiasmatic nucleus, likely due, in part, to the actions of circulating estrogens. Circadian locomotor rhythms, which are coordinated by the suprachiasmatic nucleus, have been shown to be regulated by developmental and adult levels of circulating estrogens. Further, increasing evidence suggests that estrogens can modulate expression of circadian clock genes that are essential for orchestration of circadian rhythms by the suprachiasmatic nucleus. In this review, we will discuss the organizational and activational modulation of the circadian timekeeping system by estrogens through estrogen receptor signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ejn.14184 | DOI Listing |
ACS Appl Bio Mater
January 2025
Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou 510050, China.
Circadian rhythm disruption, commonly caused by factors such as jet lag and shift work, is increasingly recognized as a critical factor impairing wound healing. Although melatonin is known to regulate circadian rhythms and has potential in wound repair, its clinical application is limited by low bioavailability. To address these challenges, we developed an alginate-based dual-network hydrogel as a delivery system for melatonin, ensuring its stable and sustained release at the wound site.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig, Centre for Biodiversity Monitoring and Conservation Science, Bonn, Germany.
Understanding insect behaviour and its underlying drivers is vital for interpreting changes in local biodiversity and predicting future trends. Conventional insect traps are typically limited to assess the composition of local insect communities over longer time periods and provide only limited insights into the effects of abiotic factors, such as light on species activity. Achieving finer temporal resolution is labour-intensive or only possible under laboratory conditions.
View Article and Find Full Text PDFRes Child Adolesc Psychopathol
January 2025
Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
Developmental changes in youth sleep preferences (chronotype) and pubertal development are consequential for youth risk for depression. Previous research has identified individual differences in chronotype in risk for psychopathology. However, little is known regarding how the timing of chronotype may confer risk in youth.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
January 2025
Human Anatomy, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, Pisa, 56100, PI, Italy.
Anorexia nervosa (AN) represents an eating disorder, which features the highest rate of mortality among all psychiatric disorders. The disease prevalence is increasing steadily, and an effective cure is missing. The neurobiology of the disease is largely unknown, and only a few studies were designed to disclose specific brain areas, where altered neural transmission may occur.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil.
All known bioluminescent fungi are basidiomycetes belonging to the Agaricales. They emit 520-530 nm wavelength light 24 h per day in a circadian rhythm. The number of known bioluminescent fungi has more than doubled in the past 15 years from 64 to 132 species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!