Attention-deficit/hyperactivity disorder (ADHD) is characterized by attention  deficit, hyperactivity, impulsivity, and learning and memory impairment. Although the pathogenesis of learning and memory impairment is still unknown, some studies have suggested an association with hippocampus dysfunction. We aimed to explore the role of miRNAs in the learning and memory impairments observed in ADHD. Differentially expressed hippocampal micro-ribonucleic acids (miRNAs) in spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were detected on an Illumina HiSeq. 2000 genome analyzer. A total of 25 differentially expressed miRNAs (fold-change ≥ 2 and P-value < 0.05) were identified. The target genes of these differentially expressed miRNAs were predicted using online tools (TargetScan and miRDB). Gene ontology and pathway analysis of the predicted target genes were carried out to assess their putative biological functions. Meanwhile, quantitative real-time PCR was used to validate the HiSeq results, revealing that three miRNAs (miR-1-b, miR-741-3p, and miR-206-3p) were upregulated and four (miR-182, miR-471-5p, miR-183-5p, and miR-211-5p) were downregulated in the SHR group compared with the WKY group. In addition, we confirmed that Dyrk1a is regulated by miR-211-5p. These results help us understand the contribution of miRNAs in the hippocampus to ADHD and provide new insights into the pathogenesis of this condition.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.27639DOI Listing

Publication Analysis

Top Keywords

learning memory
12
attention-deficit/hyperactivity disorder
8
memory impairment
8
differentially expressed
8
mirna profiling
4
profiling hippocampus
4
hippocampus attention-deficit/hyperactivity
4
disorder rats
4
rats attention-deficit/hyperactivity
4
disorder adhd
4

Similar Publications

Amidst growing concerns over COVID-19 aftereffects like fatigue and cognitive issues, NRICM101, a traditional Chinese medicine, has shown promise. Used by over 2 million people globally, it notably reduces hospitalizations and intubations in COVID-19 patients. To explore whether NRICM101 could combat COVID-19 brain fog, we tested NRICM101 on hACE2 transgenic mice administered the S1 protein of SARS-CoV-2, aiming to mitigate S1-induced cognitive issues by measuring animal behaviors, immunohistochemistry (IHC) staining, and next-generation sequencing (NGS) analysis.

View Article and Find Full Text PDF

The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.

View Article and Find Full Text PDF

Background: The imbalance of glutamate (Glu) and gamma-aminobutyric acid (GABA) neurotransmitter system plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Riluzole is a Glu modulator originally approved for amyotrophic lateral sclerosis that has shown potential neuroprotective effects in various neurodegenerative disorders. However, whether riluzole can improve Glu and GABA homeostasis in AD brain and its related mechanism of action remain unknown.

View Article and Find Full Text PDF

Background: Sleep is an active process that affects human health and quality of life. Sleep is essential for learning and memory consolidation. Good sleep is required for good academic performance.

View Article and Find Full Text PDF

Objectives: This study aimed to develop an automated skills assessment tool for surgical trainees using deep learning.

Background: Optimal surgical performance in robot-assisted surgery (RAS) is essential for ensuring good surgical outcomes. This requires effective training of new surgeons, which currently relies on supervision and skill assessment by experienced surgeons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!