Exercise is generally considered to have health benefits for the body, although its beneficial mechanisms have not been fully elucidated. Recent progressive research suggests that myokines, bioactive substances secreted from skeletal muscle, play an important role in mediating the benefits of exercise. There are three types of myokines in terms of the muscular secretion mechanism: those in which the secretion is promoted by stimulation, such as irisin, interleukin (IL)-6, and IL-15; those whose secretion is constitutive, such as thioredoxin, glutaredoxin, and peroxiredoxin; and those whose secretion is suppressed by stimulation, such as by a macrophage migration inhibitory factor. Although dozens of myokines have been reported, their physiological roles are not well understood. Therefore, there currently exists no advanced drug discovery research specifically targeting myokines, with the exception of Myostatin. Myostatin was discovered as a negative regulator of muscle growth. Myostatin is secreted from muscle cells as a myokine; it signals via an activin type IIB receptor in an autocrine manner, and regulates gene expressions involved in myogenesis. Given the studies to date that have been conducted on the utilization of myostatin inhibitors for the treatment of muscle weakness, including cachexia and sarcopenia, other myokines may also be new potential drug targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/yakushi.18-00091-5 | DOI Listing |
Alzheimers Dement
December 2024
USC Leonard Davis School of Gerontology, Los Angeles, CA, USA
Background: Alzheimer’s disease (AD) is associated with complex pathophysiology including synaptic dysregulation, compromised neurotrophic signaling, deficits in autophagic flux and neuroinflammation). Skeletal muscle regulates many brain functions relevant to aging, by activating the muscle‐to‐brain axis through the secretion of skeletal muscle originating factors (myokines) with cellular‐modifying, neuro and geroprotective properties. Our group developed transgenic mice that overexpress the skeletal muscle human Transcription Factor EB (TFEB), a master regulator of lysosomal‐to‐nucleus signaling, resulting in enhanced proteostasis and neuroprotection in a Tau mouse model.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy.
The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress.
View Article and Find Full Text PDFNat Metab
January 2025
State Key Laboratory of Membrane Biology, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
Maintaining blood glucose homeostasis during fasting and feeding is crucial for the prevention of dysregulation that can lead to either hypo- or hyperglycaemia. Here we identified feimin, encoded by a gene with a previously unknown function (B230219D22Rik in mice, C5orf24 in humans), as a key modulator of glucose homeostasis. Feimin is secreted from skeletal muscle during feeding and binds to its receptor, receptor protein tyrosine kinase Mer (MERTK), promoting glucose uptake and inhibiting glucose production by activation of AKT.
View Article and Find Full Text PDFPhysiol Behav
December 2024
Ankara University, Faculty of Medicine, Department of Physiology, Ankara, Turkey.
Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders . This study aimed to investigate the effects of high-intensity interval training (HIIT) on insulin resistance, oxidative stress, soleus muscle function, and myokine levels in a PCOS rat model. Female rats were assigned to four groups: Control, PCOS, PCOS+Exercise, and Exercise (n=15 each).
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Department of Spine Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!