Synapse formation defines neuronal connectivity and is thus essential for neuronal circuit assembly. Trans-synaptic interactions of cell adhesion molecules are thought to induce synapse assembly. Here we demonstrate that a recently discovered and conserved short form of neurexin, γ-neurexin, which lacks canonical extracellular domains, is nonetheless sufficient to promote presynaptic assembly in the nematode C. elegans. γ- but not α-neurexin is required for assembling active zone components, recruiting synaptic vesicles, and clustering calcium channels at release sites to promote evoked synaptic transmission. Furthermore, we find that neurexin functions in parallel with the transmembrane receptor Frizzled, as the absence of both proteins leads to an enhanced phenotype-the loss of most synapses. Frizzled's pro-synaptogenic function is independent of its ligand, Wnt. Wnt binding instead eliminates synapses by inducing Frizzled's endocytosis and the downregulation of neurexin. These results reveal how pro- and anti-synaptogenic factors converge to precisely sculpt circuit formation in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6181781 | PMC |
http://dx.doi.org/10.1016/j.neuron.2018.09.007 | DOI Listing |
GBA is the major risk gene for Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB), two common α-synucleinopathies with cognitive deficits. We investigated the role of mutant GBA in cognitive decline by utilizing Gba (L444P) mutant, SNCA transgenic (tg), and Gba-SNCA double mutant mice. Notably, Gba mutant mice showed early cognitive deficits but lacked PD-like motor deficits or α-synuclein pathology.
View Article and Find Full Text PDFNat Commun
January 2025
School of Integrated Circuits and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
Biological neural circuits demonstrate exceptional adaptability to diverse tasks by dynamically adjusting neural connections to efficiently process information. However, current two-dimension materials-based neuromorphic hardware mainly focuses on specific devices to individually mimic artificial synapse or heterosynapse or soma and encoding the inner neural states to realize corresponding mock object function. Recent advancements suggest that integrating multiple two-dimension material devices to realize brain-like functions including the inter-mutual connecting assembly engineering has become a new research trend.
View Article and Find Full Text PDFNat Commun
January 2025
Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany.
At presynaptic active zones (AZs), scaffold proteins are critical for coordinating synaptic vesicle release and forming essential nanoarchitectures. However, regulatory principles steering AZ scaffold assembly, function, and plasticity remain insufficiently understood. We here identify an additional Drosophila AZ protein, "Blobby", essential for proper AZ nano-organization.
View Article and Find Full Text PDFNat Commun
December 2024
Nanobiology Institute, Yale University, West Haven, CT, USA.
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
Although MoSe-based photodetectors have achieved excellent performance, the ultrafast photoresponse has limited their application as an optoelectronic synapse. In this paper, the enhancement of the rhodamine 6G molecule on the memory time of MoSe is reported. It is found that the memory time of monolayer MoSe can be obviously enhanced after assembly with rhodamine 6G exhibiting synaptic characteristics in comparison to pristine MoSe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!