Objective: The present study investigated the electroclinical features and epileptogenic networks of parietal operculum seizures (POS) by using stereoelectroencephalography (SEEG) intracerebral recordings.
Methods: Comprehensive presurgical evaluation data of seven patients with drug-resistant epilepsy with POS were analyzed retrospectively. Stereoelectroencephalography-recorded seizures were processed visually and quantitatively by using epileptogenicity mapping (EM), which has been proposed to ergonomically quantify the epileptogenicity of brain structures with a neuroimaging approach.
Results: Six patients reported initial somatosensory or viscerosensitive symptoms. Ictal clinical signs comprised frequently nocturnal hypermotor seizures and contralateral focal motor seizures, including tonic, tonic-clonic, or dystonic seizures of the face and limbs. Interictal and ictal scalp EEG provided information regarding lateralization in the majority of patients, but the discharges were widely distributed over perisylvian or "rolandic-like" regions and the vertex. Furthermore, two subgroups of epileptogenic network organization were identified within POS by SEEG, visually and quantitatively, using an EM approach: group 1 (mesial frontal/cingulate networks) was observed in three patients who mainly exhibited hypermotor seizures; group 2 (perisylvian networks) was observed in four patients who mainly exhibited contralateral focal motor seizures.
Conclusion: This study indicated that POS could be characterized by initial specific somatosensory sensations, followed by either frequently nocturnal hypermotor seizures or contralateral focal motor seizures. The distinctive seizure semiology depended on the organization of two primary epileptogenic networks. This article is part of the Special Issue "Individualized Epilepsy Management: Medicines, Surgery and Beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yebeh.2018.08.031 | DOI Listing |
Epilepsia
January 2025
Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France.
Objective: Lennox-Gastaut syndrome (LGS) is typically characterized by drug-resistant epilepsy and subsequent cognitive deterioration. Surgery is a rare but viable option for the control of seizures in a subset of patients with LGS. This study aimed to describe the organization of the epileptogenic zone network (EZN) in patients with LGS using stereoelectroencephalography (SEEG) and to report the outcome of post-SEEG treatment.
View Article and Find Full Text PDFJ Neural Eng
January 2025
Hangzhou Dianzi University, School of Automation, Hangzhou Dianzi University, Hangzhou 310052, China, Hangzhou, Zhejiang, 310018, CHINA.
The identification of spikes, as a typical characteristic wave of epilepsy, is crucial for diagnosing and locating the epileptogenic region. The traditional seizure detection methods lack spike features and have low sample richness. This paper proposes a seizure detection method with spike-based phase locking value (PLV) functional brain networks and multi-domain fused features.
View Article and Find Full Text PDFEur J Neurol
February 2025
IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Neurology and Stroke Center, Maggiore Hospital, Bologna, Italy.
Background: To investigate the relevance of hyperperfusion on computerised perfusion imaging (CTP) in the emergency setting in people with non-convulsive status epilepticus (NCSE) and previous stroke, to derive relevant aspects on the epileptogenic focus and the network recruited for NCSE propagation.
Methods: We enrolled consecutive adult patients with acute-onset NCSE and a previous stroke at a single institution undergoing CTP and EEG during symptoms. All patients underwent standard imaging including CT, CTP, CT angiograms and standard EEG within 30 min from hospital arrival.
Neurosurg Focus Video
January 2025
Department of Neurosurgery.
Surgically remediable epilepsy of the eloquent brain poses the added challenge of preserving function while curing disease. Long-standing epileptogenic lesions have tenacious seizure networks and significant functional reorganizations. Large multilobar lesions may involve multiple functional areas, thereby challenging the limits of functional brain mapping.
View Article and Find Full Text PDFPathology
December 2024
Partner of the European Reference Network (ERN) EpiCARE, Germany.
Focal lesions of the human neocortex often cause drug-resistant epilepsy, yet surgical resection of the epileptogenic region has been proven as a successful strategy to control seizures in a carefully selected patient cohort. Continuous efforts to study neurosurgically resected brain samples at the microscopic level, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!