Tuberculosis (TB) is the leading global cause of death from a single infectious agent. Registered incidence rates are low, especially in low-resource countries with weak health systems, due to the disadvantages of current diagnostic techniques. A major effort is directed to develop a point-of-care (POC) platform to reduce TB deaths with a prompt and reliable low-cost technique. In the frame of the European POCKET Project, a novel POC platform for the direct and noninvasive detection of TB in human urine was developed. The photonic sensor chip is integrated in a disposable cartridge and is based on a highly sensitive Mach-Zehnder Interferometer (MZI) transducer combined with an on-chip spectral filter. The required elements for the readout are integrated in an instrument prototype, which allows real-time monitoring and data processing. In this work, the novel POC platform has been employed for the direct detection of lipoarabinomannan (LAM), a lipopolysaccharide found in the mycobacterium cell wall. After the optimization of several parameters, a limit of detection of 475 pg/mL (27.14 pM) was achieved using a direct immunoassay in undiluted human urine in less than 15 min. A final validation of the technique was performed using 20 clinical samples from TB patients and healthy donors, allowing the detection of TB in people regardless of HIV coinfection. The results show excellent correlation to those obtained with standard techniques. These promising results demonstrate the high sensitivity, specificity and applicability of our novel POC platform, which could be used during routine check-ups in developing countries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.8b00393DOI Listing

Publication Analysis

Top Keywords

poc platform
16
human urine
12
novel poc
12
detection
5
platform
5
label-free real-time
4
real-time detection
4
detection tuberculosis
4
tuberculosis human
4
urine samples
4

Similar Publications

Electrochemical aptamer-based biosensors (E-aptasensors) are emerging platforms for point-of-care (POC) detection of complex biofluids. Human saliva particularly offers a noninvasive matrix and unprecedented convenience for detecting illicit drugs, such as cocaine. However, the sensitivity of cocaine E-aptasensors is significantly compromised in saliva.

View Article and Find Full Text PDF

Growing concerns about the health risks of melamine adulteration in food products highlight the urgent need for reliable detection methods. However, the long-term effects of chronic low-level melamine exposure remain inadequately explored. This study introduces THE ONE InstantCare platform, a portable immunoassay analyzer integrating a SpectroChip-based spectral processing unit (SPU) with lateral flow immunoassay (LFIA) for sensitive and accurate quantification of melamine in human urine.

View Article and Find Full Text PDF

Evaluating digital mental health services across racial and ethnic identities is crucial to ensuring health equity. We examined how People of Color (POC) and White adults were using and benefiting from an employer-sponsored digital mental health platform. A sample of 947 adults (42% POC) consented to an observational study and completed surveys on their identities and mental health outcomes at baseline and three-month follow-up.

View Article and Find Full Text PDF

Nucleic acid detection plays a crucial role in various applications, including disease diagnostics, research development, food safety, and environmental health monitoring. A rapid, point-of-care (POC) nucleic acid test can greatly benefit healthcare system by providing timely diagnosis for effective treatment and patient management, as well as supporting diseases surveillance for emerging pandemic diseases. Recent advancements in nucleic acids technology have led to rapid assays for single-stranded nucleic acids that can be integrated into simple and miniaturized platforms for ease of use.

View Article and Find Full Text PDF

Trends in Aptasensing and the Enhancement of Diagnostic Efficiency and Accuracy.

ACS Synth Biol

January 2025

Biosensors and Nanobiotechnology Laboratory, Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.

The field of healthcare diagnostics is navigating complex challenges driven by evolving patient demographics and the rapid advancement of new technologies worldwide. In response to these challenges, these biosensors offer distinctive advantages over traditional diagnostic methods, such as cost-effectiveness, enhanced specificity, and adaptability, making their integration with point-of-care (POC) platforms more feasible. In recent years, aptasensors have significantly evolved in diagnostic capabilities through the integration of emerging technologies such as microfluidics, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems, wearable devices, and machine learning (ML), driving progress in precision medicine and global healthcare solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!