Aldose reductases (ARs) belonging to the aldo-keto reductase (AKR) superfamily catalyze the conversion of carbonyl substrates into their respective alcohols. Here we report the crystal structures of the yeast Debaryomyces nepalensis xylose reductase (DnXR, AKR2B10) in the apo form and as a ternary complex with a novel NADP-DTT adduct. Xylose reductase, a key enzyme in the conversion of xylose to xylitol, has several industrial applications. The enzyme displayed the highest catalytic efficiency for l-threose (138 ± 7 mm ·s ) followed by d-erythrose (30 ± 3 mm ·s ). The crystal structure of the complex reveals a covalent linkage between the C4N atom of the nicotinamide ring of the cosubstrate and the S1 sulfur atom of DTT and provides the first structural evidence for a protein mediated NADP-low-molecular-mass thiol adduct. We hypothesize that the formation of the adduct is facilitated by an in-crystallo Michael addition of the DTT thiolate to the specific conformation of bound NADPH in the active site of DnXR. The interactions between DTT, a four-carbon sugar alcohol analog, and the enzyme are representative of a near-cognate product ternary complex and provide significant insights into the structural basis of aldose binding and specificity and the catalytic mechanism of ARs. DATABASE: Structural data are available in the PDB under the accession numbers 5ZCI and 5ZCM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.14667 | DOI Listing |
Arch Biochem Biophys
January 2025
Department of Biochemistry and Center of Excellent in Protein Structure & Function, Faculty of Science, Mahidol University, Bangkok, 14000, Thailand. Electronic address:
Bacterial luciferase (LuxAB) catalyzes the conversion of reduced flavin mononucleotide (FMNH⁻), oxygen, and a long-chain aldehyde to oxidized FMN, the corresponding acid and water with concomitant light emission. This bioluminescence reaction requires the reaction of a flavin reductase such as LuxG (in vivo partner of LuxAB) to supply FMNH⁻ for the LuxAB reaction. LuxAB is a well-known self-sufficient luciferase system because both aldehyde and FMNH⁻ substrates can be produced by the associated enzymes encoded by the genes in the lux operon, allowing the system to be auto-luminous.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.
The Qinghai-Tibet Plateau, famously known as the "Roof of the World", has witnessed a surge in individuals traveling or working there. However, a considerable percentage of these individuals may suffer from acute mountain sickness (AMS), with high-altitude pulmonary edema (HAPE) being a severe and potentially life-threatening manifestation. HAPE disrupts the balance of intrapulmonary tissue fluid, resulting in severe lung function impairment.
View Article and Find Full Text PDFTransgenic Res
January 2025
Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.
View Article and Find Full Text PDFNat Plants
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
Plant cuticular waxes serve as highly responsive adaptations to variable environments. Aliphatic waxes consist of very-long-chain (VLC) compounds produced from 1-alcohol- or alkane-forming pathways. The existing variation in 1-alcohols and alkanes across Arabidopsis accessions revealed that 1-alcohol amounts are negatively correlated with aridity factors, whereas alkanes display the opposite behaviour.
View Article and Find Full Text PDFSci Rep
January 2025
Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, 464000, Henan, China.
Hydroxytyrosol, a fine chemical, is widely utilized in food and pharmaceutical industries. In this study, we constructed a pathway to produce hydroxytyrosol by co-expressing tyrosin-phenol lyase (TPL), L-amino acid dehydrogenase (aadL), α-keto acid decarboxylase (KAD), aldehyde reductase (yahK) and glucose dehydrogenase (gdh). We changed combinations between plasmids with different copy numbers and target genes, resulting in 84% increase in hydroxytyrosol production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!