Baicalein, a bioactive flavonoid, has poor water solubility, thereby limiting its use in a wide range of biological applications. In the present study, we used inclusion complexes of cysteinyl β-cyclodextrin (β-CD) with baicalein to enhance the stability and solubility of baicalein in aqueous solution. We examined the effects of inclusion complexes of cysteinyl β-CD on collagen synthesis following ultraviolet (UV) irradiation, as well as the mechanisms underlying its effects. Our findings demonstrated that baicalein significantly restored collagen synthesis in the UV-exposed human fibroblast Hs68 cells. In addition, synthetic cysteine functionalized β-CDs were found to promote baicalein-induced collagen synthesis. Inclusion complexes of cysteinyl β-CDs with baicalein significantly upregulated the protein expression of type I collagen and activated the transcription of type I, II, and III collagen. Inclusion complexes of cysteinyl β-CDs with baicalein also downregulated matrix metalloproteinase -1 and -3, and α-smooth muscle actin expression. In addition, inclusion complexes of cysteinyl β-CDs with baicalein attenuated the expression of caveolin-1, but this treatment enhanced the UV-induced phosphorylation of Smad in the transforming growth factor-β pathway. These results suggested that the newly synthesized derivative of CD can be used as a complexing agent to enhance the bioavailability of flavonoids such as baicalein, especially in restoring collagen synthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.27687 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!