Impact of total laboratory automation on workflow and specimen processing time for culture of urine specimens.

Eur J Clin Microbiol Infect Dis

Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Campus Box 8118, Saint Louis, MO, 63110, USA.

Published: December 2018

Total laboratory automation (TLA) has the potential to reduce specimen processing time, improve standardization of cultures, and decrease turnaround time (TAT). The objective of this study was to perform a detailed interrogation of the impact of TLA implementation in all aspects of the workflow for routine culture of urine specimens. Using a detailed motion capture study, the time required for major steps of processing and result reporting were prospectively assessed for urine samples prior to (n = 215) and after (n = 203) implementation of the BD Kiestra TLA system. Specimens were plated on all shifts, but cultures were read only during the day shift for both time periods. Significant increases were noted in the time from receipt to inoculation (23.0 min versus 32.0 min, p < 0.001) and total processing time (28.0 min versus 66.0 min, p < 0.0001) for urine specimens post-TLA. Rates of positive (18.6% versus 16.3%) and negative (71.2% versus 79.3%) urine cultures remained stable through the pre- and post-TLA time periods (p = 0.58). There were no changes in TAT for organism identification or susceptibility results. The time to final report was decreased from 43.8 h pre-TLA to 42.0 h post-TLA, which was attributed to significant decreases in TAT for negative cultures (42.0 h versus 37.5 h, p = 0.01). These findings demonstrate that changes in laboratory workflow are necessary to maximize efficiency of TLA and optimize TAT.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10096-018-3391-7DOI Listing

Publication Analysis

Top Keywords

total laboratory
8
laboratory automation
8
specimen processing
8
processing time
8
culture urine
8
urine specimens
8
time
6
impact total
4
automation workflow
4
workflow specimen
4

Similar Publications

Replication Study and Meta-Analysis of the Contribution of Seven Genetic Polymorphisms in Immune-Related Genes to the Risk of Gastric and Colorectal Cancers.

Int J Immunogenet

January 2025

Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China.

Recently, it has been realized that immune processes participate in the pathogenesis of human cancers. A large number of genetic polymorphisms in immune-related genes have been extensively examined for their roles in the susceptibility of gastric cancer (GC) and colorectal cancer (CRC), including IL4 gene rs2070874, IL4RA gene rs1801275, IL18 gene rs187238, IL18RAP gene rs917997, IL17A gene rs8193036, IL23R gene rs1884444 and IL23R gene rs10889677. However, there is no consistent conclusion, which calls for further research.

View Article and Find Full Text PDF

Molecular Identification and Antifungal Susceptibility of Fusarium spp. Clinical Isolates.

Mycoses

January 2025

Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.

Background: Accurate identification of Fusarium species requires molecular identification. Treating fusariosis is challenging due to widespread antifungal resistance, high rates of treatment failure, and insufficient information relating antifungal susceptibility to the clinical outcome. Despite recent outbreaks in Mexico, there is limited information on epidemiology and antifungal susceptibility testing (AST).

View Article and Find Full Text PDF

Luminal flow in the connecting tubule induces afferent arteriole vasodilation.

Clin Exp Nephrol

January 2025

Renal Medicine Division, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Office 338A, Atlanta, GA, 30322, USA.

Background: Renal autoregulatory mechanisms modulate renal blood flow. Connecting tubule glomerular feedback (CNTGF) is a vasodilator mechanism in the connecting tubule (CNT), triggered paracrinally when high sodium levels are detected via the epithelial sodium channel (ENaC). The primary activation factor of CNTGF-whether NaCl concentration, independent luminal flow, or the combined total sodium delivery-is still unclear.

View Article and Find Full Text PDF

Resurgence of common respiratory viruses and mycoplasma pneumoniae after ending the zero-COVID policy in Shanghai.

Sci Rep

January 2025

Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wanyuan Rd, Minhang District, Shanghai, 201102, China.

China has adhered to policies of zero-COVID for almost three years since the outbreak of COVID-19, which has remarkably affected the circulation of respiratory pathogens. However, China has begun to end the zero-COVID policies in late 2022. Here, we reported a resurgence of common respiratory viruses and Mycoplasma pneumoniae with unique epidemiological characteristics among children after ending the zero-COVID policy in Shanghai, China, 2023.

View Article and Find Full Text PDF

Background: African buffalo (Syncerus caffer) is a significant reservoir host for many zoonotic and parasitic infections in Africa. These include a range of viruses and pathogenic bacteria, such as tick-borne rickettsial organisms. Despite the considerations of mammalian blood as a sterile environment, blood microbiome sequencing could become crucial for agnostic biosurveillance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!