Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/annrheumdis-2018-214174 | DOI Listing |
Eur J Radiol
January 2025
Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, China. Electronic address:
Objective: To explore the clinical value of combining split-bolus contrast injection with dual-energy CT(DECT) scanning technology in pediatric computed tomography urography (CTU) imaging.
Methods: A total of 128 children aged 0-17 years were prospectively selected and randomly assigned to three groups: A, B, and C. For Group A, a high-pitch flash mode was employed, where a single bolus of contrast agent was followed by four-phase scanning (noncontrast, cortex, medulla, and excretory phases).
J Magn Reson Imaging
January 2025
Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
Background: As ferroptosis is a key factor in renal fibrosis (RF), iron deposition monitoring may help evaluating RF. The capability of quantitative susceptibility mapping (QSM) for detecting iron deposition in RF remains uncertain.
Purpose: To investigate the potential of QSM to detect iron deposition in RF.
J Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
FASEB J
January 2025
Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Nuclear factor of activated T-cells 5 (NFAT5) is a transcription factor known for its role in osmotic stress adaptation in the renal inner medulla, due to the osmotic gradient that is generated between the renal cortex and renal inner medulla. However, its broader implications in kidney injury and chronic kidney disease (CKD) are less understood. Here we used two different Cre deleter mice (Ksp1.
View Article and Find Full Text PDFJCI Insight
January 2025
Division of Nephrology, Department of Medicine, Vanderbildt University Medical Center, Nashville, United States of America.
Urinary obstruction causes injury to the renal medulla, impairing the ability to concentrate urine, and increasing the risk of progressive kidney disease. However, the regenerative capacity of the renal medulla after reversal of obstruction is poorly understood. To investigate this, we developed a mouse model of reversible urinary obstruction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!