Electrical stimulation of the piriform cortex for the treatment of epilepsy: A review of the supporting evidence.

Epilepsy Behav

The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia; Department of Neurology, Austin Health, Melbourne, 145 Studley Road, Heidelberg, Victoria 3084, Australia.

Published: November 2018

In this review, we consider how the piriform cortex is engaged in both focal and generalized epilepsy networks and postulate the various neural pathways that can be effectively neuromodulated by stimulation at this site. This highlights the common involvement of the piriform cortex in epilepsy. We address both current and future preclinical studies of deep brain stimulation (DBS) of the piriform cortex, with attention to the critical features of these trials that will enable them to be of greatest utility in informing clinical translation. Although recent DBS trials have utilized thalamic targets, electrical stimulation of the piriform cortex may also be a useful intervention for people with epilepsy. However, more work is required to develop a solid foundation for this approach before considering human trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yebeh.2018.09.004DOI Listing

Publication Analysis

Top Keywords

piriform cortex
20
electrical stimulation
8
stimulation piriform
8
piriform
5
cortex
5
cortex treatment
4
epilepsy
4
treatment epilepsy
4
epilepsy review
4
review supporting
4

Similar Publications

The ventrolateral pallial (VLp) excitatory neurons in the claustro-amygdalar complex and piriform cortex (PIR; which forms part of the palaeocortex) form reciprocal connections with the prefrontal cortex (PFC), integrating cognitive and sensory information that results in adaptive behaviours. Early-life disruptions in these circuits are linked to neuropsychiatric disorders, highlighting the importance of understanding their development. Here we reveal that the transcription factors SOX4, SOX11 and TFAP2D have a pivotal role in the development, identity and PFC connectivity of these excitatory neurons.

View Article and Find Full Text PDF

Although the pathophysiology of pain has been investigated tremendously, there are still many open questions with regard to specific pain entities and their pain-related symptoms. To increase the translational impact of (preclinical) animal neuroimaging pain studies, the use of disease-specific pain models, as well as relevant stimulus modalities, are critical. We developed a comprehensive framework for brain network analysis combining functional magnetic resonance imaging (MRI) with graph-theory (GT) and data classification by linear discriminant analysis.

View Article and Find Full Text PDF

Unlabelled: LCN2 has an osteokine important for appetite regulation; in type 2 diabetes (T2D) it is not known whether appetite regulation mediated by LCN2 in the brain is altered. In this work, we focus on exploring the role of blocking LCN2 in metabolic health and appetite regulation within the central nervous system of mice with T2D.

Material And Methods: 4-week-old male C57BL/6 mice were used, divided into four experimental groups: intact, T2D, TD2/anti-LCN2, and T2D/IgG as isotype control.

View Article and Find Full Text PDF

Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex.

View Article and Find Full Text PDF

The piriform cortex (PC) plays a pivotal role in the onset and propagation of temporal lobe epilepsy (TLE), making it a potential target for therapeutic interventions. This review delves into the anatomy and epileptogenic connections of the PC, highlighting its significance in seizure initiation and resistance to pharmacological treatments. Despite its importance, the PC remains underexplored in surgical approaches for TLE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!