A paper-based chemiresistive biosensor employing single-walled carbon nanotubes for low-cost, point-of-care detection.

Biosens Bioelectron

Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; Materials Science and Engineering Program, University of California, Riverside, CA 92521, USA. Electronic address:

Published: April 2019

Paper-based biosensors are promising for low-cost diagnostics. However, its widespread use has been hampered due to a lack of sensitive detection methods that can be easily implemented on paper substrates. On the other hand, single-walled carbon nanotubes (SWNTs) -based chemiresistive biosensors are gaining popularity as label-free, highly sensitive biosensors. However, traditional SWNT-based chemiresistors need to be more affordable for use in resource-limited settings. In this study, we report fabrication, optimization and analytical characterization of a chemiresistive biosensor on paper for label-free immunosensing. We synthesized a water-based ink using pyrene carboxylic acid (PCA) through non-covalent π-π stacking interaction between PCA and SWNTs. The PCA/SWNTs ink concentration can reach ~4 mg mL and was stable at room temperature for one month. We introduced a combination of wax printing and vacuum filtration to fabricate the hydrophilic channels and the well-defined PCA/SWNTs ink deposition on paper in a facile manner requiring no additional masks or stencils. Specific antibodies were then functionalized on the PCA/SWNTs. Quantitative and selective detection of human serum albumin (HSA) is demonstrated with a limit of detection (LOD) of 1 pM. This low LOD is attributed to the porous structure of the paper surface, which can accommodate more SWNTs. Furthermore, the hydroxyl group-containing cellulose fibers help connect the SWNTs into an electrical network. The paper-based chemiresistive biosensor proposed here is easy to fabricate, and designed for rapid, sensitive and selective detection of HSA. This work provides a potential platform for automated, disposable paper-based biosensors with multiplexed detection capability and microfluidic controls.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2018.09.041DOI Listing

Publication Analysis

Top Keywords

chemiresistive biosensor
12
paper-based chemiresistive
8
single-walled carbon
8
carbon nanotubes
8
paper-based biosensors
8
pca/swnts ink
8
selective detection
8
detection
6
paper-based
4
biosensor employing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!