The deposition of oxygen-defective ZnO films exhibiting varied nanostructures via Solution Precursor Plasma Spray (SPPS) route, a one-step, minute-scaled duration and large scale method, is reported. The in situ formation of oxygen vacancies in ZnO films was confirmed by UV-Visible, Raman and photoluminescence (PL) spectroscopy and the as-prepared samples exhibit a bandgap as low as 3.02 eV. Density functional theory (DFT) simulation demonstrates that the polarization of ZnO is enhanced by the created oxygen vacancies, leading to substantially improved photocatalytic activity. The comparative experiments also revealed that forming and preserving appropriate ZnO precursor clusters inside the plasma plume is requisite for obtaining propitious ZnO nanostructures, which was followed by the in situ transfer and growth of the clusters on the preheated substrate. The ZnO-NRs films fully degrade the aqueous Orange II dye solutions within 120 min and maintain a quasi-intact activity (95.8% retention) after five test runs, which highlight their good stability. The oxygen vacancies and the narrowing of the bandgap also enable a visible light-driven photodegradation activity with conversions as high as 54.1%. In summary, this work not only reveals that the photocatalytic activity of SPPS-deposited ZnO films benefit from oxygen vacancies and well nanostructures, but also suggests that the SPPS route is of high potential for preparing metal oxides films destined to functional applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2018.09.067DOI Listing

Publication Analysis

Top Keywords

zno films
16
oxygen vacancies
16
oxygen-defective zno
8
spps route
8
photocatalytic activity
8
films
6
zno
6
nanostructures
4
films nanostructures
4
nanostructures prepared
4

Similar Publications

One of the main limitations of biopolymers compared to petroleum-based polymers is their weak mechanical and physical properties. Recent improvements focused on surmounting these constraints by integrating nanoparticles into biopolymer films to improve their efficacy. This study aimed to improve the properties of gelatin-chitosan-based biopolymer layers using zinc oxide (ZnO) and graphene oxide (GO) nanoparticles combined with spermidine to enhance their mechanical, physical, and thermal properties.

View Article and Find Full Text PDF

This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) and annealing treatments on the films. An X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity and phase purity, particularly in films deposited with 70 cycles.

View Article and Find Full Text PDF

Recently, interest in eco-friendly techniques for producing antibacterial food packaging films has surged. Within this context, plasma polymerization is emerging as a promising approach for applying degradable antibacterial coatings on various plastic films. This research therefore employs an atmospheric pressure aerosol-assisted plasma deposition technique to create polyethylene glycol (PEG)-like coatings embedding zinc oxide nanoparticles (ZnO NPs) of varying sizes on polyethylene (PE) substrates.

View Article and Find Full Text PDF

Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.

View Article and Find Full Text PDF

Acidic Engineering on Buried Interface toward Efficient Inorganic CsPbI Perovskite Light-Emitting Diodes.

Nano Lett

January 2025

School of Environmental Science and Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China.

Inorganic CsPbI perovskite has emerged as a promising emitter for deep-red light-emitting diodes (LEDs) due to its intrinsic thermal stability and suitable bandgap. However, uncontrollable CsPbI crystallization induced by an alkaline zinc oxide (ZnO) substrate in bulk film-based LEDs leads to insufficient external quantum efficiencies (EQEs) at high brightness, leaving obstacles in commercialization progress. Herein, we demonstrate an effective acidic engineering strategy with wide applicability to modify the surface property of ZnO and regulate CsPbI crystallization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!