An untargeted NMR-based metabonomics approach was used to evaluate the effects of pure resveratrol (RSV, 50 and 250 mg/kg per os) on the urinary and faecal metabolome of normal female Wistar rats. Multivariate data analysis on both the endogenous and xenobiotic metabotype of RSV provided an insight into its metabolic fate and influence on endogenous metabolites. The xenobiotic trajectory shows that RSV is highly metabolized within the first 12 h, the period of the most significant variation of endogenous metabolites. The results reveal alterations in gut microbiota co-metabolites, mainly at the high dose of RSV, such as hippurate, phenylacetyl glycine (PAG), p-cresyl glucuronide (p-CG), p-cresyl sulfate (p-CS) and 3-indoxylsulfate (3IS), as well as in osmolytes (creatine, creatinine, taurine and proline betaine). This metabolic variation could mean that RSV modulates the composition and/or function of the gut microbiota as well as its interaction with the host through the gut-microbiome-liver-kidney axis. For instance, RSV may interact with conjugating enzymes present in the intestine and liver. There were also modifications in metabolites of the tricarboxylic acid (TCA) cycle and energy metabolism (2-oxoglutarate, lactate and alanine), and diet-derived metabolites (pantothenate and trans-aconitate). These effects of RSV are perhaps related to its capacity to control energy homeostasis, provide renal protection, and downregulate some biomarkers of oxidative stress (e.g., glycoproteins). Such changes contribute to reduced oxidative stress and inflammation, which are associated with RSV-induced biological activity to improve various conditions, including metabolic disorders, obesity, and chronic and cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2018.09.025 | DOI Listing |
Cell
January 2025
Program in Bioinformatics, Boston University, Boston, MA 02215, USA; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Center for Network Systems Biology, Boston University, Boston, MA 02218, USA; Department of Chemistry, Boston University, Boston, MA 02215, USA; Department of Chemical Physiology and Biochemistry, Division of Oncological Sciences, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA. Electronic address:
Knowledge of protein-metabolite interactions can enhance mechanistic understanding and chemical probing of biochemical processes, but the discovery of endogenous ligands remains challenging. Here, we combined rapid affinity purification with precision mass spectrometry and high-resolution molecular docking to precisely map the physical associations of 296 chemically diverse small-molecule metabolite ligands with 69 distinct essential enzymes and 45 transcription factors in the gram-negative bacterium Escherichia coli. We then conducted systematic metabolic pathway integration, pan-microbial evolutionary projections, and independent in-depth biophysical characterization experiments to define the functional significance of ligand interfaces.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
As a crucial post-translational modification (PTM), protein ubiquitination mediates the breakdown of particular proteins, which plays a pivotal role in a large number of biological processes including plant growth, development, and stress response. The ubiquitin-proteasome system (UPS) consists of ubiquitin (Ub), ubiquitinase, deubiquitinating enzyme (DUB), and 26S proteasome mediates more than 80% of protein degradation for protein turnover in plants. For the ubiquitinases, including ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3), the FBK (F-box Kelch repeat protein) is an essential component of multi-subunit E3 ligase SCF (Skp1-Cullin 1-F-box) involved in the specific recognition of target proteins in the UPS.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, Guangdong, China.
(.), an unconventional heterothallic yeast species, is renowned for its high production of tetraacetyl phytosphingosine (TAPS). Due to its excellent performance in TAPS production, this study aimed to construct a genetic operating system of .
View Article and Find Full Text PDFTalanta
January 2025
School of Life Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW, Australia.
Metabolomics analyses enable the examination and identification of endogenous biochemical reaction products, revealing information on the metabolic pathways and processes active within a living cell or organism. Determination of metabolic shifts can provide important information on a treatment or disease. Unlike other omics fields that typically have analytes of the same chemical class with common building blocks, those that fall under the nomenclature of metabolites encompass a wide array of different compounds with very diverse physiochemical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!