In this work, we develop a simple and selective sensing method for the detection of mercury ions based on surface plasmon resonance (SPR) spectrum change of Au-Ag core-shell triangular nanoplates. When the concentration of mercury is increased, the etching-induced change of particle size and shape also leads to the decrease of the absorption peak at the fixed wavelength, until a spectrum dip takes place. This spectral change of "peak-to-dip" greatly enlarges the detection range of mercury ions, which could be fine tuned by changing the initial thickness of the Ag coating. Under optimal conditions, the decrease of the logarithmic absorption intensity has a good linear response with the concentration of mercury ions increasing from 10 to 1000 μM, and the limit of detection (LOD) is 0.88 μM. Interference studies and real samples test indicate that, this new sensing method has a good selection for mercury ions and can be practically used in lake water. This work shows the surface etching-induced SPR shift can also leads to the intensity change with "peak-to-dip" fashion, which greatly enlarge the concentration range of the detection and could be widely applied in the spectroscopy sensing based on SPR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2018.09.042 | DOI Listing |
J Environ Sci (China)
July 2025
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Rapid screening of inorganic arsenic (iAs) in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection. Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development, an environmental concern that increasingly limits its utilization. This study further improves the Molybdenum Blue (MB) colorimetric method to allow for faster screening with more stable reagents.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Heilongjiang Transportation Information and Science Research Center, Harbin 150080, China.
The degradation of concrete caused by sulfate attack poses a significant challenge to its durability. Using nanomaterials to enhance the mechanical and durability properties of concrete is a promising solution. A study of the durability of nano-alumina (NA)-modified concrete by sulfate erosion was carried out.
View Article and Find Full Text PDFComput Struct Biotechnol J
December 2024
Department of Electrical Engineering and Computer Science, Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
More than 50 % of proteins bind to metal ions. Interactions between metal ions and proteins, especially coordinated interactions, are essential for biological functions, such as maintaining protein structure and signal transport. Physiological metal-ion binding prediction is pivotal for both elucidating the biological functions of proteins and for the design of new drugs.
View Article and Find Full Text PDFFront Public Health
January 2025
Department of General Surgery, The First Affiliated Hospital, Jiamusi University, Jiamusi, China.
Background: Metabolic-associated steatohepatitis and liver fibrosis (MASLD) is a growing public health concern, with environmental factors potentially playing a role in its development. This study aimed to investigate the associations between serum cadmium and mercury levels and the risk of MASLD in a nationally representative sample from the United States.
Methods: Data from the National Health and Nutrition Examination Survey from 1999 to 2018 were analyzed.
Mikrochim Acta
January 2025
Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!