Maternal immune activation in rats blunts brain cytokine and kynurenine pathway responses to a second immune challenge in early adulthood.

Prog Neuropsychopharmacol Biol Psychiatry

Laboratory of Behavioral Neuroimmunology, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA. Electronic address:

Published: March 2019

Maternal immune activation (MIA) with the viral mimic poly I:C provides an established rodent model for studying schizophrenia (SZ) and other human neurodevelopmental disorders. Postnatal infections are additional risk factors in SZ and may cumulatively contribute to the emergence of pathophysiology. Underlying mechanisms may involve metabolites of the kynurenine pathway (KP) of tryptophan degradation, which is readily induced by inflammatory stimuli. Here we compared the expression of selected cytokines and KP enzymes, and the levels of selected KP metabolites, in the brain of MIA offspring following a second, acute immune challenge with lipopolysaccharides (LPS) on postnatal day (PND) 35 (adolescence) or PND 60 (early adulthood). Assessed in adolescence, MIA did not alter the expression of pro-inflammatory cytokines (except TNF-α) or KP metabolite levels compared to controls, but substantially reduced the expression of the anti-inflammatory cytokines IL-4 and IL-10 and influenced the expression of two of the four KP enzymes examined (IDO1 and TDO2). LPS treatment caused distinct changes in the expression of pro- and anti-inflammatory cytokines, as well as KP enzymes in MIA offspring, but had no effect on KP metabolites compared to control rats. Several of these effects were blunted in MIA offspring receiving LPS on PND 60. Notably, LPS caused a significant reduction in brain kynurenine levels in these animals. Of relevance for SZ-related hypotheses, these results indicate that MIA leads to an increasingly defective, rather than an overactive, immune regulation of cerebral KP metabolism during the postnatal period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6249106PMC
http://dx.doi.org/10.1016/j.pnpbp.2018.09.011DOI Listing

Publication Analysis

Top Keywords

mia offspring
12
maternal immune
8
immune activation
8
kynurenine pathway
8
immune challenge
8
early adulthood
8
anti-inflammatory cytokines
8
mia
6
expression
5
activation rats
4

Similar Publications

Maternal immune activation (MIA), a maternal stressor, increases risk for neuropsychiatric diseases, such as Major Depressive Disorder in offspring. MIA of toll-like receptor 7 (TLR7) initiates an immune response in mother and fetuses in a sex-selective manner. The paraventricular nucleus of the hypothalamus (PVN), a brain region that is sexually dimorphic and regulates hypothalamic-pituitary-adrenal (HPA) stress responses, have been tied to stress-related behaviors (i.

View Article and Find Full Text PDF

ATP8A2 expression is reduced in the mPFC of offspring mice exposed to maternal immune activation and its upregulation ameliorates synapse-associated protein loss and behavioral abnormalities.

Brain Behav Immun

December 2024

Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China. Electronic address:

Prenatal virus infection-induced maternal immune activation (MIA) is linked to a greater risk of neurodevelopmental disorders in offspring. Prenatal exposure to poly(I:C) in pregnant mice is a well-established approach to mimic virus infection-induced MIA, leading to neuropsychiatric disorders and aberrant brain development, especially in the medial prefrontal cortex (mPFC). ATPase phospholipid flippase 8A2 (ATP8A2) is the main phospholipid lipase, expressed in the mPFC and is crucial for maintaining cell membrane stability by flipping phosphatidylserine from the outer leaflet to the inner leaflet of the cell membrane.

View Article and Find Full Text PDF

Objective: The Risk of Pain Spreading (ROPS) is a six-item tool capturing key data-driven prognostic factors for chronic pain and its spreading. Higher values on the ROPS indicate a higher risk. Early factors potentially associated with the ROPS are unknown.

View Article and Find Full Text PDF

Unraveling pathogenesis and potential biomarkers for autism spectrum disorder associated with HIF1A pathway based on machine learning and experiment validation.

Neurobiol Dis

January 2025

Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:

Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a high social burden and limited treatments. Hypoxic condition of the brain is considered an important pathological mechanism of ASD. HIF1A is a key participant in brain hypoxia, but its contribution to the pathophysiological landscape of ASD remains unclear.

View Article and Find Full Text PDF

Rationale: Prenatal maternal immune activation (MIA) is an etiological risk factor for schizophrenia in offspring. Recently, parvalbumin (PV) positive interneuron deficits has been considered a critical pathology of many psych-cognitive disorders. Nevertheless, whether and how prenatal MIA affected PV interneuron in offspring remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!