AI Article Synopsis

  • Arsenic is a natural metalloid widely present in the environment, primarily affecting health through contaminated drinking water.
  • Exposure to arsenic can lead to multiple reproductive issues in males, including decreased testosterone levels and impaired sperm quality.
  • The review highlights various mechanisms of arsenic-induced male reproductive toxicity, such as oxidative stress and inhibition of spermatogenesis, and calls for more research to better understand these complex interactions.

Article Abstract

Arsenic is a natural metalloid found in abundance, in the environment. Exposure to arsenic can cause health issues due to its carcinogenic nature. The primary source of arsenic contact is drinking water. Exposure to arsenic in drinking water can cause reproductive dysfunction in males through a reduction in testes weight, accessory sex organ weight, viability, and motility of sperm, epididymal sperm count, decreased gonadotrophins level, decreased testosterone, and steroidogenesis disruption. This review focuses on the mechanisms by which arsenic impairs the quality of semen, based on epidemiological observations in humans, and experimental studies in different biological research models. Arsenic-mediated male reproductive toxicity can be induced by various mechanisms such as inhibition of spermatogenesis, testosterone pathway hinderance, oxidative stress, inflammation, genotoxic effects, activation of heat shock proteins, and activation of a signaling pathway in testes (ERK/AKT/NF-kB signaling pathway), among others. The interplay between the principal mechanisms involved needs to be elucidated further in future since an overall examination of arsenic-mediated male reproductive toxicity is still a deficit.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2018.09.045DOI Listing

Publication Analysis

Top Keywords

arsenic-mediated male
12
male reproductive
12
reproductive toxicity
12
exposure arsenic
8
drinking water
8
signaling pathway
8
arsenic
5
review molecular
4
molecular biochemical
4
biochemical insights
4

Similar Publications

Prevalence of perturbed gut microbiota in pathophysiology of arsenic-induced anxiety- and depression-like behaviour in mice.

Chemosphere

September 2024

Cancer Research Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India; Centre for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata, India. Electronic address:

Severe toxic effects of arsenic on human physiology have been of immense concern worldwide. Arsenic causes irrevocable structural and functional disruption of tissues, leading to major diseases in chronically exposed individuals. However, it is yet to be resolved whether the effects result from direct deposition and persistence of arsenic in tissues, or via activation of indirect signaling components.

View Article and Find Full Text PDF

Arsenic-induced disruption of circadian rhythms and glutamine anaplerosis in human urothelial carcinoma.

J Trace Elem Med Biol

December 2024

Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, National Sun Yat-Sen University Kaohsiung, Taiwan. Electronic address:

Inorganic arsenic (iAs)-induced urothelial carcinoma (UC) develops into a poor-prognosis malignancy. Arsenic-induced oxidative stress contributes to circadian rhythm disruption altered metabolism. Glutamine anaplerosis is a common metabolic feature of rapidly proliferating malignant cells, in which glutaminase (GLS) is a key enzyme in this process.

View Article and Find Full Text PDF

The hippo-YAP1/HIF-1α pathway mediates arsenic-induced renal fibrosis.

Environ Res

September 2024

Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenicy, Shenyang, Liaoning, 110122, China; Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110122, China. Electronic address:

Epidemiological evidence reveals that arsenic increases the risk of chronic kidney disease (CKD) in humans, but its mechanism of action has so far been unclear. Fibrosis is the manifestation of end-stage renal disease. Hypoxia is recognized as a vital event accompanying the progression of renal fibrosis.

View Article and Find Full Text PDF

Altered Igf2 imprint leads to accelerated adipogenesis and early onset of metabolic syndrome in male mice following gestational arsenic exposure.

Chemosphere

March 2024

Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:

Developmental exposure to environmental pollutants has been shown to promote adverse health outcomes in offspring. Exposure to heavy metals such as arsenic which also has endocrine-disrupting activity is being increasingly linked with cancers, diabetes, and lately with Metabolic Syndrome (MetS). In this work, we have assessed the effects of preconceptional plus gestational arsenic exposure on the developmental programming of MetS in offspring.

View Article and Find Full Text PDF

Microglial Neuroinflammation-Independent Reversal of Demyelination of Corpus Callosum by Arsenic in a Cuprizone-Induced Demyelinating Mouse Model.

Mol Neurobiol

September 2024

Immunotoxicology Laboratory, System Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.

Demyelination is the loss of myelin in CNS, resulting in damaged myelin sheath. Oxidative stress and neuroinflammation play a key role in inducing demyelinating diseases like MS; hence, controlling oxidative stress and neuroinflammation is important. Cuprizone (CPZ), a copper chelator, generates oxidative stress and neuroinflammation, thereby inducing demyelination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: