Metabolism and adult neurogenesis: Towards an understanding of the role of lipocalin-2 and iron-related oxidative stress.

Neurosci Biobehav Rev

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. Electronic address:

Published: December 2018

The process of generating new functional neurons in the adult mammalian brain occurs from the local neural stem and progenitor cells and requires tight control of the progenitor cell's activity. Several signaling pathways and intrinsic/extrinsic factors have been well studied over the last years, but recent attention has been given to the critical role of cellular metabolism in determining the functional properties of progenitor cells. Here, we review recent advances in the current understanding of when and how metabolism affects neural stem cell (NSC) behavior and subsequent neuronal differentiation and highlight the role of lipocalin-2 (LCN2), a protein involved in the control of oxidative stress, as a recently emerged regulator of NSC activity and neuronal differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neubiorev.2018.09.014DOI Listing

Publication Analysis

Top Keywords

role lipocalin-2
8
oxidative stress
8
neural stem
8
progenitor cells
8
neuronal differentiation
8
metabolism adult
4
adult neurogenesis
4
neurogenesis understanding
4
understanding role
4
lipocalin-2 iron-related
4

Similar Publications

Evaluation of the serum level of Lipocalin 2 in vitiligo.

Arch Dermatol Res

January 2025

Department of Dermatology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.

Vitiligo is considered as depigmenting skin disorder where patches of skin losing their pigment. Lipocalin-2 (LCN2) is one of the Inflammatory adipokines that has a potential role in skin disorders and other inflammatory diseases as well. To measure the concentration level of LCN2 in vitiligo patients compared to healthy controls and to investigate its relation to disease activity and other clinical data to evaluate its role in the pathogenesis of the disease.

View Article and Find Full Text PDF

Adipose tissue may not be a major player in the inflammatory pathogenesis of Autism Spectrum Disorder.

Brain Behav Immun Health

February 2025

Institute of Maternal and Child Medicine, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.

Purpose: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder increasingly recognized for its strong association with chronic inflammation. Adipose tissue functions as an endocrine organ and can secrete inflammatory cytokines to mediate inflammation. However, its involvement in ASD-related inflammation remains unclear.

View Article and Find Full Text PDF

Unlabelled: LCN2 has an osteokine important for appetite regulation; in type 2 diabetes (T2D) it is not known whether appetite regulation mediated by LCN2 in the brain is altered. In this work, we focus on exploring the role of blocking LCN2 in metabolic health and appetite regulation within the central nervous system of mice with T2D.

Material And Methods: 4-week-old male C57BL/6 mice were used, divided into four experimental groups: intact, T2D, TD2/anti-LCN2, and T2D/IgG as isotype control.

View Article and Find Full Text PDF
Article Synopsis
  • Intervertebral disc degeneration (IVDD) is a major cause of low back pain, and while Sirt1 agonists show promise in protecting intervertebral discs, the exact mechanisms involved are not fully understood.
  • The study utilized various models to investigate the role of Sirt1 in disc cell inflammation and homeostasis, revealing that Sirt1 overexpression can inhibit inflammation and matrix degradation in degenerating discs.
  • Findings suggest that Sirt1 regulates inflammation by negatively impacting Lipocalin 2, signaling a potential pathway for developing treatments aimed at preventing IVDD progression.
View Article and Find Full Text PDF

Acute lung injury (ALI), a severe pulmonary disorder that poses a significant threat to life, is closely associated with macrophage ferroptosis and polarization. Lipocalin 2 (LCN2) has been previously reported to be implicated in the pathogenesis of ALI. However, the specific role of LCN2 in macrophage ferroptosis and polarization remains undetermined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!