Histone deacetylases (Hdacs) play significant roles in cellular homeostasis and tissue differentiation. Hdacs are well characterized in various systems for their physiological and epigenetic relevance. However, their significance during retina regeneration remains unclear. Here we show that inhibition of Hdac1 causes a decline in regenerative ability, and injury-dependent regulation of hdacs is essential for regulating regeneration-associated genes like ascl1a, lin28a, and repressors like her4.1 at the injury site. We show selective seclusion of Hdac1 from the proliferating Müller glia-derived progenitor cells (MGPCs) and its upregulation in the neighboring cells. Hdacs negatively regulate her4.1, which also represses lin28a and essential cytokines to control MGPCs proliferation. Interestingly, Hdacs' inhibition reversibly blocks regeneration through the repression of critical cytokines and other regeneration-specific genes, which is also revealed by whole-retina RNA sequence analysis. Our study shows mechanistic understanding of the Hdac pathway during zebrafish retina regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6135741PMC
http://dx.doi.org/10.1016/j.isci.2018.08.008DOI Listing

Publication Analysis

Top Keywords

retina regeneration
12
histone deacetylase-mediated
4
deacetylase-mediated müller
4
müller glia
4
glia reprogramming
4
reprogramming her41-lin28a
4
her41-lin28a axis
4
axis essential
4
essential retina
4
regeneration
4

Similar Publications

Previous studies have demonstrated the dynamic changes in chromatin structure during retinal development correlate with changes in gene expression. However, those studies lack cellular resolution. Here, we integrate single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) with bulk data to identify cell-type-specific changes in chromatin structure during human and murine development.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Article Synopsis
  • Down Syndrome (DS) is linked with a higher risk of developing Alzheimer's disease (AD), yet the effects of AD on the retina in DS individuals remain unexplored.
  • The study analyzed cadaver retinas from DS donors and developed retinal organoid models using induced pluripotent stem cells, aiming to identify AD-related pathology.
  • Findings showed increased amyloid-β plaques and phosphorylated Tau in DS retinas and organoids compared to controls, mirroring brain pathology, which could enhance AD diagnosis and treatment strategies in DS patients.
View Article and Find Full Text PDF

The role of RGC degeneration in the pathogenesis of glaucoma.

Int J Biol Sci

January 2025

Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun 130000, Jilin, China.

Glaucoma is a neurodegenerative disorder marked by the loss of retinal ganglion cells (RGCs) and axonal degeneration, resulting in irreversible vision impairment. While intraocular pressure (IOP) is presently acknowledged as the sole modifiable risk factor, the sensitivity of RGCs to IOP varies among individuals. Consequently, progressive vision loss may ensue even when IOP is effectively managed.

View Article and Find Full Text PDF

The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery.

View Article and Find Full Text PDF

Tppp3 is a novel molecule for retinal ganglion cell identification and optic nerve regeneration.

Acta Neuropathol Commun

December 2024

Department of Ophthalmology, UPMC Vision Institute, University of Pittsburgh School of Medicine, 1622 Locust Street, Pittsburgh, PA, 15219, USA.

Mammalian central nervous system (CNS) axons cannot spontaneously regenerate after injury, creating an unmet need to identify molecular regulators to promote axon regeneration and reduce the lasting impact of CNS injuries. While tubulin polymerization promoting protein family member 3 (Tppp3) is known to promote axon outgrowth in amphibians, its role in mammalian axon regeneration remains unknown. Here we investigated Tppp3 in retinal ganglion cells (RGCs) neuroprotection and axonal regeneration using an optic nerve crush (ONC) model in the rodent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!