A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantitative assessment of environmental impact of biologics manufacturing using process mass intensity analysis. | LitMetric

Quantitative assessment of environmental impact of biologics manufacturing using process mass intensity analysis.

Biotechnol Prog

Upstream Process Development and Engineering, Biologics Process Development and Clinical Manufacturing, Merck & Co., Inc. (USA), 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033.

Published: November 2018

Process mass intensity (PMI) is a benchmarking metric to evaluate the efficiency of a manufacturing process, which is indicative of the environmental impact of the process. Although this metric is commonly applied for small molecule manufacturing processes, it is less commonly applied to biologics. In this study, an Excel based tool developed by the ACS GCI Pharmaceutical Roundtable was used to calculate PMI of different manufacturing processes for a monoclonal antibody (mAb). For the upstream process, three different versions were compared: fed-batch, fed-batch with N-1 perfusion, and perfusion in the N-stage bioreactor. For each upstream process version, an appropriate downstream operational mode was evaluated from the following: a column chromatography process utilizing Protein A and anion exchange (AEX) resin, a Protein A column and an AEX membrane, and a three-column periodic counter-current (3C PCC) chromatography process for Protein A and an AEX membrane. The impact of these different process variations on PMI was evaluated. Of all the process inputs, water contributes about 92-94% of the overall PMI. Additionally, the upstream processes and the chromatography steps account for 32-47 and 34-54% of the overall PMI, respectively. Sensitivity analysis was performed to identify opportunities for further reducing PMI. These data indicate that a semicontinuous manufacturing process (perfusion, 3C PCC, and AEX membrane) is the most efficient process, resulting in a 23% reduction of PMI when compared with the fed batch and two-column chromatography process. Together, PMI can be used to guide the development of efficient and environmentally sustainable mAb manufacturing processes. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1566-1573, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.2702DOI Listing

Publication Analysis

Top Keywords

process
13
manufacturing process
12
manufacturing processes
12
chromatography process
12
aex membrane
12
environmental impact
8
process mass
8
mass intensity
8
pmi
8
impact process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!