Background: The identification of prognostic and/or predictive biomarkers for response to immune checkpoint inhibitors (ICI) could help guide treatment decisions.
Objective: We assessed changes in programmed cell death-1 (PD1)/PD1 ligand (PDL1) expression in key immunomodulatory cell subsets (myeloid-derived suppressor cells [MDSC]; cytotoxic T lymphocytes [CTL]) following ICI therapy and investigated whether these changes correlated with outcomes in patients with metastatic urothelial carcinoma (mUC).
Patients And Methods: Serial peripheral blood samples were collected from ICI-treated mUC patients. Flow cytometry was used to quantify PD1/PDL1 expression on MDSC (CD33HLADR) and CTL (CD8CD4) from peripheral blood mononuclear cells. MDSC were grouped into monocytic (M)-MDSC (CD14CD15), polymorphonuclear (PMN)-MDSC (CD14CD15), and immature (I)-MDSC (CD14CD15). Mixed-model regression and Wilcoxon signed-rank or rank-sum tests were performed to assess post-ICI changes in immune biomarker expression and identify correlations between PD1/PDL1 expression and objective response to ICI.
Results: Of 41 ICI-treated patients, 26 received anti-PDL1 (23 atezolizumab/3 avelumab) and 15 received anti-PD1 (pembrolizumab) therapy. Based on available data, 27.5% had prior intravesical Bacillus Calmette-Guérin therapy, 42% had prior neoadjuvant chemotherapy, and 70% had prior cystectomy or nephroureterectomy. Successive doses of anti-PDL1 correlated with decreased percentage of PDL1 (%PDL1) M-MDSC, while doses of anti-PD1 correlated with decreased %PD1 M- and I-MDSC. Although pre-treatment %PD1 CTL did not predict response, a greater %PD1 CTL within 9 weeks after ICI initiation correlated with objective response.
Conclusions: Treatment with ICI correlated with distinct changes in PD1/PDL1-expressing peripheral immune cell subsets, which may predict objective response to ICI. Further studies are required to validate immune molecular expression as a prognostic and/or predictive biomarker for long-term outcomes in mUC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11523-018-0595-9 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.
Background: The antigen Na-GST-1, expressed by the hookworm Necator americanus, plays crucial biochemical roles in parasite survival. This study explores the development of mRNA vaccine candidates based on Na-GST-1, building on the success of recombinant Na-GST-1 (rNa-GST-1) protein, currently assessed as a subunit vaccine candidate, which has shown promise in preclinical and clinical studies.
Methodology/findings: By leveraging the flexible design of RNA vaccines and protein intracellular trafficking signal sequences, we developed three variants of Na-GST-1 as native (cytosolic), secretory, and plasma membrane-anchored (PM) antigens.
PLoS Pathog
January 2025
Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America.
Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown.
View Article and Find Full Text PDFPLoS One
January 2025
College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
Background: As an opportunistic bacterial pathogen, Klebsiella pneumoniae (KP) is prone to causing a spectrum of diseases in rabbits when their immune system is compromised, which poses a threat to rabbit breeding industry. Bacillus coagulans (BC), recognized as an effective probiotic, confers a variety of benefits including anti-inflammatory and antioxidant properties.
Aim: The purpose of this study was to investigate whether dietary BC can effectively alleviate hepatic injury caused by KP.
PLoS One
January 2025
Department of Traditional Chinese Medicine, Ruijin Hospital, Shanghai Jiao Tong University Medical College, Shanghai, China.
Mycobacterium abscessus is a rapidly growing nontuberculous mycobacterium that causes severe pulmonary infections. Recent studies indicate that ferroptosis may play a critical role in the pathogenesis of M. abscessus pulmonary disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!