Interface Probing by Dielectric Frequency Dispersion in Carbon Nanocomposites.

Sci Rep

Institute for Composites Science Innovation(InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.

Published: September 2018

Interfaces remain one of the major issues in limiting the understanding and designing of polymer nanocomposites due to their complexity and pivotal role in determining the ultimate composites properties. In this study, we take multi-walled carbon nanotubes/silicone elastomer nanocomposites as a representative example, and have for the first time studied the correlation between high-frequency dielectric dispersion and static/dynamic interfacial characteristics. We have found that the interface together with other meso-structural parameters (volume fraction, dispersion, agglomeration) play decisive roles in formulating the dielectric patterns. The calculation of the relaxation times affords the relative importance of interfacial polarization to dipolar polarization in resultant dielectric relaxation. Dielectric measurements coupled with cyclic loading further reveals the remarkable capability of dielectric frequency dispersion in capturing the evolution of interfacial properties, such as a particular interface reconstruction process occurred to the surfactant-modified samples. All these results demonstrate that high-frequency dielectric spectroscopy is instrumental to probing both static and dynamic meso-structural characteristics, especially effective for the composites with relative weak interfaces which remains a mission impossible for many other techniques. The insights provided here based on the analyses of dielectric frequency dispersion will pave the way for optimized design and precise engineering of meso-structure in polymer nanocomposites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162296PMC
http://dx.doi.org/10.1038/s41598-018-32452-9DOI Listing

Publication Analysis

Top Keywords

dielectric frequency
12
frequency dispersion
12
dielectric
8
polymer nanocomposites
8
high-frequency dielectric
8
dispersion
5
interface probing
4
probing dielectric
4
dispersion carbon
4
nanocomposites
4

Similar Publications

Manipulating Fano Coupling in an Opto-Thermoelectric Field.

Adv Sci (Weinh)

January 2025

Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Fano resonances in photonics arise from the coupling and interference between two resonant modes in structures with broken symmetry. They feature an uneven and narrow and tunable lineshape and are ideally suited for optical spectroscopy. Many Fano resonance structures have been suggested in nanophotonics over the last ten years, but reconfigurability and tailored design remain challenging.

View Article and Find Full Text PDF

A multi-band high-sensitivity microwave sensor for simultaneous detection of two dielectric materials.

Rev Sci Instrum

January 2025

The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System, Luoyang 471004, China.

A multi-band high-sensitivity microwave sensor is reported. The two resonance units are based on complementary square spiral resonators (CSSRs) and produce four measurement bands through parasitic resonances. The four frequency bands are 2.

View Article and Find Full Text PDF

Integration of Through-Sapphire Substrate Machining with Superconducting Quantum Processors.

Adv Mater

January 2025

Oxford Quantum Circuits, Thames Valley Science Park, Shinfield, Reading, RG2 9LH, UK.

A sapphire machining process integrated with intermediate-scale quantum processors is demonstrated. The process allows through-substrate electrical connections, necessary for low-frequency mode-mitigation, as well as signal-routing, which are vital as quantum computers scale in qubit number, and thus dimension. High-coherence qubits are required to build fault-tolerant quantum computers and so material choices are an important consideration when developing a qubit technology platform.

View Article and Find Full Text PDF

The adulteration of honey is a globally growing issue due to its medicinal benefits and health-promoting properties. This problem primarily involves the addition of sugars and other substances. To address these concerns, a comparative study was conducted to investigate the dielectric and spectroscopic properties of pure, sugar solution added honey, and commercially available honey.

View Article and Find Full Text PDF

Vortex beams are currently drawing a great deal of interest, from fundamental research to several promising applications. While their generation in bulky optical devices limits their use in integrated complex systems, metasurfaces have recently proven successful in creating optical vortices, especially in the linear regime. In the nonlinear domain, of strategic importance for the future of classical and quantum information, to date orbital angular momentum has only been created in qualitative ways, without discussing discrepancies between design and experimental results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!