Topologically protected pseudospin transport, analogous to the quantum spin Hall effect, cannot be strictly implemented for photons and in general bosons because of the lack of symmetry-protected pseudospins. Here we show that the required protection can be provided by the real-space topological excitation of an interacting quantum fluid: a quantum vortex. We consider a Bose-Einstein condensate at the Γ point of the Brillouin zone of a quantum valley Hall system based on two staggered honeycomb lattices. We demonstrate the existence of a coupling between the vortex winding and the valley of the bulk Bloch band. This leads to chiral vortex propagation on each side of the zigzag interface between two regions of inverted staggering. The topological protection provided by the vortex winding prevents valley pseudospin mixing and resonant backscattering, allowing a truly topologically protected valley pseudospin transport.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162209 | PMC |
http://dx.doi.org/10.1038/s41467-018-06520-7 | DOI Listing |
Nanotechnology
January 2025
Xidian University, Xi'an 710071, China, Xi'an, Xian, Shaanxi, 710126, CHINA.
Anti-ambipolar transistors (AAT) are considered as a breakthrough technology in the field of electronics and optoelectronics, which is not only widely used in diverse logic circuits, but also crucial for the realization of high-performance photodetectors. The anti-ambipolar characteristics arising from the gate-tunable energy band structure can produce high-performance photodetection at different gate voltages. As a result, this places higher demands on the parametric driving range (ΔVg) and peak-to-valley ratio (PVR) of the AAT.
View Article and Find Full Text PDFSmall
January 2025
Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing, 401331, China.
Spin-orbit coupling (SOC) induced nontrivial bandgap and complex Fermi surface has been considered to be profitable for thermoelectrics, which, however, is generally appreciable only in heavy elements, thereby detrimental to practical application. In this study, the SOC-driven extraordinary thermoelectric performance in a light 2D material Fe₂S₂ is demonstrated via first-principles calculations. The abnormally strong SOC, induced by electron correlation through 3d orbitals polarization, significantly renormalizes the band structures, which opens the bandgap via Fe 3d orbitals inversion, exposes the second conduction valley with weak electron-phonon coupling, and aligns the energy of Fe 3d and S 3p orbitals with divergent momentum in valence band.
View Article and Find Full Text PDFNano Lett
January 2025
Materials Science and Technology Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, Tennessee 37831, United States.
Thermally driven transitions between ferromagnetic and paramagnetic phases are characterized by critical behavior with divergent susceptibilities, long-range correlations, and spin dynamics that can span kHz to GHz scales as the material approaches the critical temperature , but it has proven technically challenging to probe the relevant length and time scales with most conventional measurement techniques. In this study, we employ scanning nitrogen-vacancy center based magnetometry and relaxometry to reveal the critical behavior of a high- ferromagnetic oxide near its Curie temperature. Cluster analysis of the measured temperature-dependent nanoscale magnetic textures points to a 3D universality class with a correlation length that diverges near .
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, United States.
A spin valve represents a well-established device concept in magnetic memory technologies, whose functionality is determined by electron transmission, controlled by the relative alignment of magnetic moments of the two ferromagnetic layers. Recently, the advent of valleytronics has conceptualized a valley spin valve (VSV)─a device that utilizes the valley degree of freedom and spin-valley locking to achieve a similar valve effect without relying on magnetism. In this study, we propose a nonvolatile VSV (-VSV) based on a two-dimensional (2D) ferroelectric semiconductor where resistance of -VSV is controlled by a ferroelectric domain wall between two uniformly polarized domains.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
Expanded heterohelicenes composed of alternating linearly and angularly fused multi-resonance (MR) skeletons have gained wide interest owing to their promising narrowband emissions. Herein, a pair of sym- and asym-expanded heterohelicene isomers was obtained by merging boron/oxygen (B/O)-embedded MR triangulene and indolo[3,2,1-jk]carbazole units via one-pot synthesis. Owing to their fully resonating extended helical skeleton, the target heterohelicenes exhibit a significantly narrowed spectra bandwidth while emission red-shifting, thus affording deep-blue narrowband emission with a peak at approximately 460 nm, full-width-at-half-maximum (FWHM) of only 18 nm, and near-unity photoluminescence quantum yields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!