The lysophosphatidic acid receptor-3 (LPAR3) is a G protein-coupled receptor that mediates viability among malignant cells and aggressiveness among certain tumors. The study's objective was to determine the interplay between LPAR3 and miRNAs to impact key cellular signaling pathways. Using SK-Mel-2 and SK-Mel-5 melanoma cells, wild-type and mutated receptors were stably expressed to explore molecular mechanisms. LPAR3 signaling induced miR-122-5p intracellularly and subsequently its inclusion into exosomes. This amplification resulted in less abundant Wnt1, maintenance of GSK3 inactivation and to a lesser extent, partial degradation of β-catenin. The surge in miR-122-5p and reduction in Wnt1 originated from signaling at the Src homology 3 (SH3) ligand-binding motif within the third intracellular loop of LPAR3, because mutant receptors did not increase miR-122-5p and had a weakened capacity to reduce Wnt1. In addition, a key mediator of melanoma survival signaling, the peroxisome proliferator-activated receptor gamma coactivator 1-α (PPARGC1A/PGC1), was involved in miR-122-5p transcription. In conclusion, this study highlights the powerful role miRNAs have in fine-tuning specific G protein-coupled receptor-mediated signaling events by altering the transcription of signaling transduction pathway components. This study also identifies that LPAR3 increases miR-122-5p expression, which occurs mechanistically through the SH3 domain and helps explain why miR-122-5p increases are detected in cancer patient serum. IMPLICATIONS: LPAR3 is partially responsible for the production and secretion of miR-122-5p, found in the serum of a wide variety of patients with cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-18-0460DOI Listing

Publication Analysis

Top Keywords

mir-122-5p
8
mir-122-5p expression
8
melanoma cells
8
lpar3
7
signaling
6
expression secretion
4
secretion melanoma
4
cells amplified
4
amplified lpar3
4
lpar3 sh3-binding
4

Similar Publications

Serum Exosomes miR-122-5P Induces Hepatic and Renal Injury in Septic Rats by Regulating TAK1/SIRT1 Pathway.

Infect Drug Resist

January 2025

Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People's Republic of China.

Aim: Sepsis is a potentially fatal condition characterized by organ failure resulting from an abnormal host response to infection, often leading to liver and kidney damage. Timely recognition and intervention of these dysfunctions have the potential to significantly reduce sepsis mortality rates. Recent studies have emphasized the critical role of serum exosomes and their miRNA content in mediating sepsis-induced organ dysfunction.

View Article and Find Full Text PDF

Integrative analysis of miRNAs and proteins in plasma extracellular vesicles of patients with familial hypercholesterolemia.

Clin Chim Acta

January 2025

Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000 Brazil. Electronic address:

Background And Aims: Familial Hypercholesterolemia (FH) is a monogenic disease that leads to early-onset atherosclerosis. Causative mutations in FH-related genes are found in 60-80 % of patients, while epigenetic factors may contribute to mutation-negative cases. This study analyzed miRNAs and proteins from plasma-derived extracellular vesicles (EVs) of FH patients to explore their contribution in FH diagnosis.

View Article and Find Full Text PDF

Currently, risk stratification for pediatric Hodgkin lymphoma is based on clinical factors such as stage, bulk, and systemic symptoms. Novel minimally invasive biomarkers could enhance both prognosis and treatment strategies. Therefore, the plasma extracellular vesicles' microRNA profile was characterized by small RNA sequencing in 36 classical Hodgkin lymphoma cases and these findings were confirmed in an extended cohort of 86 patients by RT-qPCR.

View Article and Find Full Text PDF

Background/objectives: Exosomes, nano-sized extracellular vesicles released by all cells, play a key role in intercellular communication and carry tumorigenic properties that impact surrounding or distant cells. The complexity of the exosomal molecular interactome and its effects on recipient cells still remain unclear. This study aims to decipher the molecular profile and interactome of lung adenocarcinoma A549 cell-derived exosomes using multi-omics and bioinformatics approaches.

View Article and Find Full Text PDF

The aim of this study was to analyze dihydrolipoyllysine-residue acetyltransferase (DLAT) expression and diagnostic ability in hepatocellular carcinoma (HCC), assess its role in HCC growth, and factors affecting it. We conducted bioinformatics analyses, examined DLAT expression and prognosis in pre-cancer, and performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment studies while investigating its correlation with immunity. We also predicted regulatory factors, and detected DLAT in HCC cells using quantitative PCR (qPCR) and Western blotting, and in patient serum via enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!