Cognitive dysfunction on chronic exposure to hypobaric hypoxia has been attributed to a myriad of survival and degenerative factors. Downregulation of Trkβ and compromised survival signaling has been ascribed as a major contributing factor for hypoxic neurodegeneration. The mechanisms leading to downregulation of Trkβ in hypoxia, however, remain to be elucidated. The present study aimed at investigating the upstream signaling mechanisms leading to Trkβ downregulation in hypoxia and the potential of Kaempferol in ameliorating these changes. Our results showed a duration-dependent increase in hypoxic neurodegeneration as measured by Fluoro-Jade C staining of hippocampal CA3 neurons. Protein expression studies revealed strong correlation of Trkβ with NR1 and NR2b expression on exposure to hypoxic stress. Administration of Kaempferol during hypoxic stress revealed its neuroprotective effect and Morris Water Maze test also highlighted its efficacy in improving spatial learning and memory. Further elucidation of the signaling mechanisms using specific inhibitors and in vitro silencing experiments confirmed involvement of extra-synaptic N-methyl-d-aspartate receptor (NMDAR) i.e. NR2b receptor subunit in downregulation of Trkβ under hypoxic conditions. ChIP assay showed involvement of E47 transcription factor in NR2b mediated Trkβ downregulation. Selective inhibition of signaling intermediate MLK2 by CEP11004 and inhibition of extra-synaptic NMDAR during hypoxic stress prevented Trkβ downregulation in the hippocampus of hypoxic rats. Administration of Kaempferol also inhibited phosphorylation of E47 and hypoxia-induced downregulation of Trkβ. The present study establishes the role of extra-synaptic NMDAR in hypoxia-induced downregulation of Trkβ and the efficacy of Kaempferol in inhibiting extra-synaptic NMDAR-mediated signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2018.09.018DOI Listing

Publication Analysis

Top Keywords

downregulation trkβ
24
trkβ downregulation
12
hypoxic stress
12
trkβ
10
downregulation
9
extra-synaptic nmdar-mediated
8
hypoxic neurodegeneration
8
mechanisms leading
8
signaling mechanisms
8
administration kaempferol
8

Similar Publications

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Regulatory role of miR-128-2-5p in serum exosomes on COL6A2 expression and postmenopausal osteoporosis.

Hum Mol Genet

January 2025

Department of Orthopaedics, Jiujiang No.1 People's Hospital, No. 48, Taling South Road, Xunyang District, Jiujiang City, Jiangxi Province 332000, China.

This study investigates the influence of miR-128-2-5p within serum-derived exosomes (Exos) on COL6A2 expression and its implications in postmenopausal osteoporosis (POMP). Utilizing bioinformatics analysis, we identified 1317 differentially expressed genes (DEGs), primarily enriched in the focal adhesion pathway-a critical regulator of osteoblast adhesion. A significant gene, COL6A2, emerged as notably downregulated in POMP, possessing potential as a diagnostic marker.

View Article and Find Full Text PDF

Thyromimetics and MASLD: Unveiling the Novel Molecules Beyond Resmetirom.

J Gastroenterol Hepatol

January 2025

Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India.

Background: Resmetirom, the first FDA-approved drug for nonalcoholic steatohepatitis (NASH) with fibrosis in obese patients, when combined with lifestyle modifications, improves NASH resolution and reduces fibrosis by at least one stage. Low thyroid hormone (T) levels are linked to a higher risk of developing metabolic dysfunction-associated steatotic liver disease (MASLD). Epidemiological studies have confirmed the positive correlation between hypothyroidism and MASLD.

View Article and Find Full Text PDF

Ellagitannins from Pomegranate Flower with Whitening and Anti-skin Photoaging Effect.

Chem Biodivers

January 2025

Yatsen Global Innovation R&D Center, Yatsen Global Innovation R&D Center, No. 11 Building, No. 210, Wenshui Road, Jingan District, Shanghai, CHINA.

A new depside glucoside rosarugoside E (1), together with four known compounds punicalagin (2), corilagin (3), granatin B (4) and ellagic acid (5) were isolated from the ethanol extract of pomegranate (Punica granatum L.) flower. Their structures were identified based on careful analysis of various spectral data including UV, IR, HR-ESI-MS, 1D and 2D NMR.

View Article and Find Full Text PDF

Cell type-specific upregulation of NKG2D ligand MICA in response to APTO253.

Ann Transl Med

December 2024

Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.

One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!