This study elucidates Y chromosome distribution patterns in the three general provincial populations of historical Tibet, Amdo (n = 88), Dotoe (n = 109) and U-Tsang (n = 153) against the backdrop of 37 Asian reference populations. The central aim of this study is to investigate the genetic affinities of the three historical Tibetan populations among themselves and to neighboring populations. Y-SNP and Y-STR profiles were assessed in these historical populations. Correspondence analyses (CA) were generated with Y-SNP haplogroup data. Y-STR haplotypes were determined and employed to generate multidimensional scaling (MDS) plots based on Rst distances. Frequency contour maps of informative Y haplogroups were constructed to visualize the distributions of specific chromosome types. Network analyses based on Y-STR profiles of individuals under specific Y haplogroups were generated to examine the genetic heterogeneity among populations. Average gene diversity values and other parameters of population genetics interest were estimated to characterize the populations. The Y chromosomal results generated in this study indicate that using two sets of markers (Y-SNP, and Y-STR) the three Tibetan populations are genetically distinct. In addition, U-Tsang displays the highest gene diversity, followed by Amdo and Dotoe. The results of this transcontinental biogeographical investigation also indicate various degrees of paternal genetic affinities among these three Tibetan populations depending on the type of loci (Y-SNP or Y-STR) analyzed. The CA generated with Y-SNP haplogroup data demonstrates that Amdo and U-Tsang are closer to each other than to any neighboring non-Tibetan group. In contrast, the MDS plot based on Y-STR haplotypes displays Rst distances that are much shorter between U-Tsang and its geographic nearby populations of Ladakh, Punjab, Kathmandu and Newar than between it and Amdo. Moreover, although Dotoe is isolated from all other groups using both types of marker systems, it lies nearer to the other Tibetan collections in the Y-SNP CA than in the Y-STR MDS plot. High resolution and shallow evolutionary time frames engendered by Y-STR based analyses may reflect a more recent demographic history than that delineated by the more conserved Y-SNP markers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gene.2018.09.043DOI Listing

Publication Analysis

Top Keywords

y-snp y-str
16
tibetan populations
12
populations
11
historical populations
8
genetic affinities
8
affinities three
8
y-str
8
y-str profiles
8
generated y-snp
8
y-snp haplogroup
8

Similar Publications

Evaluation of RMplex system for differentiating father-son pairs using Y-STRs in a Korean population.

Forensic Sci Int Genet

January 2025

Forensic DNA Division, National Forensic Service, Wonju, South Korea. Electronic address:

Y-chromosomal short tandem repeats (Y-STRs) at rapidly mutating (RM) loci have been suggested as tools for differentiating paternally related males. RMplex is a recently developed system that incorporates 26 RM loci and four fast-mutating (FM) loci, targeting 44 male-specific loci. Here, we evaluated the RMplex by estimating Y-STR mutation rates and the overall differentiation rates for 542 Korean father-son pairs, as well as the genetic population values for 409 unrelated males.

View Article and Find Full Text PDF

The Yugur people represent one of the ethnic groups residing within the Hexi Corridor, distinguishable by their small population size, linguistic diversity, intricate ancestral components, serving as a quintessential exemplar of the populations inhabiting this corridor. There are still many controversial issues in the academic community regarding the origin, migration, and formation process of the Yugur. In this study, we explored the formation process of the Yugur from the perspective of molecular anthropology, based on the paternal genetic characteristics of the Yugur people.

View Article and Find Full Text PDF

Unearthing who and Y at Harewood Cemetery and inference of George Washington's Y-chromosomal haplotype.

iScience

April 2024

Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, DE 19902, USA.

An excavation conducted at Harewood Cemetery to identify the unmarked grave of Samuel Washington resulted in the discovery of burials presumably belonging to George Washington's paternal grandnephews and their mother, Lucy Payne. To confirm their identities this study examined Y-chromosomal, mitochondrial, and autosomal DNA from the burials and a living Washington descendant. The burial's Y-STR profile was compared to FamilyTreeDNA's database, which resulted in a one-step difference from the living descendant and an exact match to another Washington.

View Article and Find Full Text PDF

Development and validation of YARN: A novel SE-400 MPS kit for East Asian paternal lineage analysis.

Forensic Sci Int Genet

July 2024

MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences,  Fudan University, Shanghai 200433, China; Institute of Archaeological Science,  Fudan University, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance,  Fudan University, Shanghai 200433, China. Electronic address:

Y-chromosomal short tandem repeat polymorphisms (Y-STRs) and Y-chromosomal single nucleotide polymorphisms (Y-SNPs) are valuable genetic markers used in paternal lineage identification and population genetics. Currently, there is a lack of an effective panel that integrates Y-STRs and Y-SNPs for studying paternal lineages, particularly in East Asian populations. Hence, we developed a novel Y-chromosomal targeted panel called YARN (Y-chromosome Ancestry and Region Network) based on multiplex PCR and a single-end 400 massive parallel sequencing (MPS) strategy, consisting of 44 patrilineage Y-STRs and 260 evolutionary Y-SNPs.

View Article and Find Full Text PDF

Paternal genetic structure analysis of the modern Han populations based on Y-SNP and Y-STR.

Yi Chuan

February 2024

Key Laboratory of Forensic Genetics, Beijing Engineering Research Center of Crime Scene Evidence Examination, National Engineering Laboratory for Forensic Science, Institute of Forensic Science, Beijing 100038, China.

The Han populations represent the largest ethnic group in China. Previous studies have primarily focused on investigating their genetic origins, migration and integration, as well as paternal genetic relationships within specific regional Han populations. However, a comprehensive analysis of the global paternal genetic structure of Han populations is lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!