Do the alterations in plant defensive signaling and metabolism that occur in susceptible hosts following virus infection serve any purpose beyond directly aiding viruses to replicate and spread? Or indeed, are these modifications to host phenotype purely incidental consequences of virus infection? A growing body of data, in particular from studies of viruses vectored by whiteflies and aphids, indicates that viruses influence the efficiency of their own transmission by insect vectors and facilitate mutualistic relationships between viruses and their insect vectors. Furthermore, it appears that viruses may be able to increase the opportunity for transmission in the long term by providing reward to the host plants that they infect. This may be conditional, for example, by aiding host survival under conditions of drought or cold or, more surprisingly, by helping plants attract beneficial insects such as pollinators. In this chapter, we cover three main areas. First, we describe the molecular-level interactions governing viral manipulation of host plant biology. Second, we review evidence that virus-induced changes in plant phenotype enhance virus transmission. Finally, we discuss how direct and indirect manipulation of insects and plants might impact on the evolution of viruses and their hosts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.aivir.2018.06.004 | DOI Listing |
Exp Anim
January 2025
Research Institute for Microbial Diseases, Osaka University.
In mammals, blastocyst-stage trophectoderm (TE) contacts the maternal body at the time of implantation and forms the placenta after implantation, which supports the development of the fetus. Studying gene function in TE and placenta is important to understand normal implantation and pregnancy processes and their dysfunction. However, genetically modified mice are commonly generated by manipulating pronuclear-stage zygotes, which modify both the genome of the fetus and the placenta.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Division of Infection and Immunity, UCL, London, WC1E 6BT, UK.
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Rm. 102, Lviv, 79005, Ukraine.
Background: Streptomyces roseochromogenes NRRL 3504 produces clorobiocin, an aminocoumarin antibiotic that inhibits DNA replication. No other natural products have been isolated from this bacterium so far, despite the presence of a rich repertoire of specialized metabolite biosynthesis gene clusters (smBGCs) within its genome. Heterologous expression of smBGCs in suitable chassis speeds up the discovery of the natural products hidden behind these sets of genes.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:
Here, we present a protocol for assessing the impact of a chemogenetic manipulation in a subpopulation of the hypothalamic neurons on aging and lifespan control using a mouse model developed specifically for this purpose. We describe steps for stereotaxic viral injection and assess inter-tissue communication between protein phosphatase 1 regulatory subunit 17 (Ppp1r17)-expressing neurons in the dorsomedial hypothalamus and white adipose tissue. We then detail procedures for lifespan measurements following chemogenetic manipulation in aged mice.
View Article and Find Full Text PDFJ Virol
January 2025
Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
Alpha-ketoglutarate-dependent dioxygenase, also known as fat mass and obesity-associated protein (FTO), is an RNA demethylase that mediates the demethylation of N,2-O-dimethyladenosine (m6Am) and N-methyladenosine (m6A). Both m6Am and m6A are prevalent modifications in mRNA and affect different aspects of transcript biology, including splicing, nuclear export, translation efficiency, and degradation. The role of FTO during (herpes) virus infection remains largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!