Design and Evaluation of Gemini Surfactant-Based Lipoplexes Modified with Cell-Binding Peptide for Targeted Gene Therapy in Melanoma Model.

J Pharm Pharm Sci

Drug Design and Discovery Research Group, College of Pharmacy and Nutrition University of Saskatchewan, Saskatoon, Canada. College of Pharmacy, Taibah University, Medina, Saudi Arabia.

Published: September 2019

Purpose Achieving successful gene therapy requires delivery of a gene vector specifically to the targeted tissue with efficient expression and a good safety profile. The objective of this work was to develop, characterize and determine if a novel gemini surfactant-based lipoplex systems, modified with a cancer-targeting peptide p18-4, could serve this role. Methods The targeting peptide p18-4 was either chemically coupled to a gemini surfactant backbone or physically co-formulated with the lipoplexes. The influence of targeting ligand and formulation strategies on essential physicochemical properties of the lipoplexes was evaluated by dynamic light scattering and small angle X-ray scattering techniques. In vitro transfection activity and cellular toxicity of lipoplexes were assessed in a model human melanoma cell line. Results All lipoplexes zeta potential and particle size were optimal for cellular uptake and physical stability of the system. The lipoplexes adopted an inverted-hexagonal lipid arrangement. The lipoplexes modified with the peptide showed no significant changes in physicochemical properties or lipoplex assembly. The modification of the lipoplexes with the targeting peptide significantly enhanced protein expression 2-6 fold compared to non-modified lipoplexes. In addition, p18-4 modified lipoplexes significantly improved the safety of the lipoplexes. The ability of the p18-4 modified lipoplexes to selectively express the model protein was confirmed by using healthy human epidermal keratinocytes (HEKa). Conclusion The gemini surfactant-based lipoplexes modified with p18-4 peptide showed significantly higher efficiency and safety compared to the system that did not contain a cancer targeting peptide and provided evidence for their potential application to achieve targeted melanoma gene therapy.

Download full-text PDF

Source
http://dx.doi.org/10.18433/jpps30010DOI Listing

Publication Analysis

Top Keywords

lipoplexes
13
gemini surfactant-based
12
lipoplexes modified
12
gene therapy
12
targeting peptide
12
surfactant-based lipoplexes
8
peptide p18-4
8
physicochemical properties
8
p18-4 modified
8
modified lipoplexes
8

Similar Publications

The development of lipid-based mRNA delivery systems has significantly facilitated recent advances in mRNA-based therapeutics. Liposomes, as the pioneering class of mRNA vectors, continue to lead in clinical trials. We previously developed a histidylated liposome that demonstrated efficient nucleic acid delivery.

View Article and Find Full Text PDF

Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes.

View Article and Find Full Text PDF

Effective targeting of somatic cancer mutations to enhance the efficacy of cancer immunotherapy requires an individualized approach. Autogene cevumeran is a uridine messenger RNA lipoplex-based individualized neoantigen-specific immunotherapy designed from tumor-specific somatic mutation data obtained from tumor tissue of each individual patient to stimulate T cell responses against up to 20 neoantigens. This ongoing phase 1 study evaluated autogene cevumeran as monotherapy (n = 30) and in combination with atezolizumab (n = 183) in pretreated patients with advanced solid tumors.

View Article and Find Full Text PDF

Delivering plasmid DNA (pDNA) to solid tumors remains a significant challenge due to the requirement for multiple transport steps and the need to promote delivery efficiency. Herein, we present a virus-mimicking hybrid lipoplex, composed of an arginine-rich cationic lipid, hyaluronic acid derivatives coated gold nanoparticles, and pDNA. This system induces cytoskeletal rearrangements through "outside-in" mechanical and "inside-out" biochemical signaling, overcoming intra- and intercellular barriers to enhance pDNA delivery.

View Article and Find Full Text PDF

Effective mRNA transfection of tumor cells using cationic triacyl lipid‑based mRNA lipoplexes.

Biomed Rep

February 2025

Department of Molecular Pharmaceutics, Hoshi University, Shinagawa, Tokyo 142-8501, Japan.

Previously, it was reported that mRNA/cationic liposome complexes (mRNA lipoplexes) composed of the cationic triacyl lipid, 11-((1,3-bis(dodecanoyloxy)-2-((dodecanoyloxy)methyl)propan-2-yl)amino)-,,- trimethyl-11-oxoundecan-1-aminium bromide (TC-1-12), with 1,2-dioleoyl-glycero-3-phosphoethanolamine and poly(ethylene glycol) cholesteryl ether, induce high protein expression in human cervical carcinoma HeLa cells. In the present study, the authors aimed to optimize mRNA transfection using TC-1-12-based mRNA lipoplexes. mRNA lipoplexes were prepared at various charge ratios (+:-) using modified ethanol injection (MEI) and thin-film hydration (TFH) methods and compared the protein expression efficiency after transfection of HeLa cells with the developed mRNA lipoplexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!