The aim of this work was to study the regulatory effect of nitrogen (N) deficiency on primary metabolites in Microcystis aeruginosa, and promote the utilization of the alga. Low-N and Non-N conditions, especially Non-N, reduced the cell growth and photosynthetic abilities compared to Normal-N, as N deficiency triggered the down-regulation of genes involving in the photosynthetic process. Non-N not changed lipid content, due to no up-regulation of genes that promoted lipid synthesis. Soluble protein content significantly decreased under Non-N, which may result from the declined expression of genes relating to amino acid and histidyl-transfer RNA synthesis. Soluble and insoluble carbohydrate content significantly increased under Non-N, as the expression variation of genes blocked sugar degradation and promoted lipopolysaccharide synthesis. Therefore, M. aeruginosa can be used as the feedstock to produce carbohydrates under N deficiency for bioethanol production, and the remainder lipids after carbohydrate extraction can be used to produce biodiesel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2018.09.079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!