Silica nanosheets (SiO NS) are considered to be a promising material in clinical practice for diagnosis and therapy applications. However, an appropriate surface functionalization is essential to guarantee high biocompatibility and molecule loading ability. Although SiO NS are chemically stable, its effects on immune systems are still being explored. In this work, we successfully synthesized a novel 2D multilayer SiO NS and SiO NS coated with carbon (C/SiO NS), and evaluated their impact on human Peripheral Blood Mononuclear Cells (PBMCs) and some immune cell subpopulations. We demonstrated that the immune response is strongly dependent on the surface functionalities of the SiO NS. Ex vivo experiments showed an increase in biocompatibility of C/SiO NS compared to SiO NS, resulting in a lowering of hemoglobin release together with a reduction in cellular toxicity and cellular activation. However, none of them are directly involved in the activation of the acute inflammation process with a consequent release of pro-inflammatory cytokines. The obtained results provide an important direction towards the biomedical applications of silica nanosheets, rendering them an attractive material for the development of future immunological therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.09.022 | DOI Listing |
Biosensors (Basel)
December 2024
Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.
Nanomaterials have attracted significant attention as signal reporters for immunoassays. They can directly generate detectable signals or release a large number of signaling elements for readout. Among various nanolabels, nanomaterials composed of multiple signaling molecules have shown great potential in immunoassays.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
Rheumatoid arthritis (RA) is a kind of inflammation homeostasis disorder that dysfunctions the joints. Clinically, medications against RA focus simply on mitigating the focal inflammation, without considering pro-osteogenesis re-modeling of the bone microenvironment. In the present work, 2D layered calcium disilicide nanoparticles (CSNs) are fabricated by facile aqueous exfoliation.
View Article and Find Full Text PDFAnal Chem
December 2024
Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
Aggregation-induced electrochemiluminescence (AIECL) provides a new approach for the development of novel electrochemiluminescence (ECL) strategies. Herein, a biosensor was constructed by incorporating 1,1,2,2-tetra(4-carboxylphenyl)ethylene (HTCPE) into a mesoporous silica nanosphere (MSN) to obtain a highly organized AIECL luminophore of (MSN-HTCPE) for signal antibody (Ab) labeling and using Pd nanocube (NC)-loaded CoO nanosheets (NSs) (PdNCs/CoONSs) as a novel coreaction accelerator. The confinement of HTCPE molecules in the MSN restricted the intramolecular rotation and thus enhanced the radiation transition of HTCPE.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Shandong RuihengXingyu Petroleum Technology Development Co., Ltd, Qingdao 266000, P. R. China.
Enhancing heavy oil recovery is crucial to ensuring stable crude oil production. The development of stimulus-responsive Janus Pickering emulsifiers tailored for a reservoir environment has garnered significant attention in the field of reservoir production, emerging as a promising alternative to traditional surfactants. In this study, silica-based Janus nanosheets with temperature-responsive properties (OH-SiO-PSBMA JNs) are synthesized using sol-gel process and atom transfer radical polymerization (ATRP) method.
View Article and Find Full Text PDFSmall
December 2024
Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!