Silica and carbon decorated silica nanosheet impact on primary human immune cells.

Colloids Surf B Biointerfaces

Functional Materials, Department of Applied Physics, The Royal Institute of Technology, School of Engineering Sciences, Isafjordsgatan 22, SE-164 40 Kista Stockholm, Sweden.

Published: December 2018

Silica nanosheets (SiO NS) are considered to be a promising material in clinical practice for diagnosis and therapy applications. However, an appropriate surface functionalization is essential to guarantee high biocompatibility and molecule loading ability. Although SiO NS are chemically stable, its effects on immune systems are still being explored. In this work, we successfully synthesized a novel 2D multilayer SiO NS and SiO NS coated with carbon (C/SiO NS), and evaluated their impact on human Peripheral Blood Mononuclear Cells (PBMCs) and some immune cell subpopulations. We demonstrated that the immune response is strongly dependent on the surface functionalities of the SiO NS. Ex vivo experiments showed an increase in biocompatibility of C/SiO NS compared to SiO NS, resulting in a lowering of hemoglobin release together with a reduction in cellular toxicity and cellular activation. However, none of them are directly involved in the activation of the acute inflammation process with a consequent release of pro-inflammatory cytokines. The obtained results provide an important direction towards the biomedical applications of silica nanosheets, rendering them an attractive material for the development of future immunological therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2018.09.022DOI Listing

Publication Analysis

Top Keywords

silica nanosheets
8
sio
6
silica
4
silica carbon
4
carbon decorated
4
decorated silica
4
silica nanosheet
4
nanosheet impact
4
impact primary
4
primary human
4

Similar Publications

Nanolabels Prepared by the Entrapment or Self-Assembly of Signaling Molecules for Colorimetric and Fluorescent Immunoassays.

Biosensors (Basel)

December 2024

Henan Province Key Laboratory of New Opto-Electronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China.

Nanomaterials have attracted significant attention as signal reporters for immunoassays. They can directly generate detectable signals or release a large number of signaling elements for readout. Among various nanolabels, nanomaterials composed of multiple signaling molecules have shown great potential in immunoassays.

View Article and Find Full Text PDF

Hydrolysis of 2D Nanosheets Reverses Rheumatoid Arthritis Through Anti-Inflammation and Osteogenesis.

Adv Mater

December 2024

Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.

Rheumatoid arthritis (RA) is a kind of inflammation homeostasis disorder that dysfunctions the joints. Clinically, medications against RA focus simply on mitigating the focal inflammation, without considering pro-osteogenesis re-modeling of the bone microenvironment. In the present work, 2D layered calcium disilicide nanoparticles (CSNs) are fabricated by facile aqueous exfoliation.

View Article and Find Full Text PDF

Aggregation-Induced Electrochemiluminescence of Silica-Confined Tetraphenylethylene with Pd Nanocube-Loaded CoO Nanosheets as a Coreaction Accelerator for Sensitive Bioanalysis.

Anal Chem

December 2024

Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.

Aggregation-induced electrochemiluminescence (AIECL) provides a new approach for the development of novel electrochemiluminescence (ECL) strategies. Herein, a biosensor was constructed by incorporating 1,1,2,2-tetra(4-carboxylphenyl)ethylene (HTCPE) into a mesoporous silica nanosphere (MSN) to obtain a highly organized AIECL luminophore of (MSN-HTCPE) for signal antibody (Ab) labeling and using Pd nanocube (NC)-loaded CoO nanosheets (NSs) (PdNCs/CoONSs) as a novel coreaction accelerator. The confinement of HTCPE molecules in the MSN restricted the intramolecular rotation and thus enhanced the radiation transition of HTCPE.

View Article and Find Full Text PDF

Preparation and Investigation of Temperature-Responsive SiO-PSBMA Janus Nanosheet with Salt-Tolerant Properties for Enhanced Recovery of Heavy Oil.

ACS Appl Mater Interfaces

December 2024

Shandong RuihengXingyu Petroleum Technology Development Co., Ltd, Qingdao 266000, P. R. China.

Enhancing heavy oil recovery is crucial to ensuring stable crude oil production. The development of stimulus-responsive Janus Pickering emulsifiers tailored for a reservoir environment has garnered significant attention in the field of reservoir production, emerging as a promising alternative to traditional surfactants. In this study, silica-based Janus nanosheets with temperature-responsive properties (OH-SiO-PSBMA JNs) are synthesized using sol-gel process and atom transfer radical polymerization (ATRP) method.

View Article and Find Full Text PDF
Article Synopsis
  • Passive radiative cooling is an energy-efficient technology that cools surfaces by reflecting sunlight and emitting heat without energy consumption.* -
  • The study details the creation of a 3D coating made of silica microspheres and boron nitride nanosheets, which enhances solar reflectance and infrared emittance, achieving significant cooling effects (up to 17.5 °C).* -
  • Additionally, the coating features self-cleaning and corrosion resistance, highlighting its potential for long-term use in various applications while improving energy-saving cooling technologies.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!