In view of the vast number of natural products with potential antiplasmodial bioactivity and cost of conducting antiplasmodial bioactivity assays, it may be judicious to learn from previous antiplasmodial bioassays and predict bioactivity of these natural products before experimental bioassays. This study set out to harness antimalarial bioactivity data of natural products to build accurate predictive models, utilizing classical machine learning approaches, which can find potential antimalarial hits from new sets of natural products. Classical machine learning approaches were used to build four classifier models (Naïve Bayesian, Voted Perceptron, Random Forest and Sequence Minimization Optimization of Support Vector Machines) from bioactivity data of natural products with in-vitro antiplasmodial activity (NAA) using a combination of the molecular descriptors and two-dimensional molecular fingerprints of the compounds. Models were evaluated with an independent test dataset. Possible chemical features associated with reported antimalarial activities of the compounds were also extracted. From the results, Random Forest (accuracy 82.81%, Kappa statistics 0.65 and Area under Receiver Operating Characteristics curve 0.91) and Sequential Minimization Optimization (accuracy 85.93%, Kappa statistics 0.72 and Area under Receiver Operating Characteristics curve 0.86) showed good predictive performance for the NAA dataset. The amine chemical group (specifically alkyl amines and basic nitrogen) was confirmed to be essential for antimalarial activity in active NAA dataset. This study built and evaluated classifier models that were used to predict the antiplasmodial bioactivity class (active or inactive) of a set of natural products from interBioScreen chemical library.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161899 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204644 | PLOS |
Ecotoxicol Environ Saf
January 2025
Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical school, University of South China, Hengyang, Hunan 421001, China. Electronic address:
Microcystin LR (MC-LR) pollution is a serious threat to aquatic ecosystems and public health in China and is an environmental problem that urgently needs to be solved. However, few studies have investigated the anaerobic degradation pathway and related molecular biological mechanisms of MC-LR. In this study, a bacterium capable of degrading MC-LR with a degradation efficiency of 0.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
BioCIS, Faculté de Pharmacie, Université Paris-Saclay, CNRS, Orsay 91400, France.
The endoperoxide scaffold is found in numerous natural products and synthetic substances of pharmaceutical interest. The main challenge to their synthetic access remains the preparation of chiral compounds due to the weakness of the peroxide bond, which limits the scope of available or applicable methods. Here, we demonstrate how peroxycarbenium species can be trapped by silylated nucleophiles with high enantioselectivities and diastereoselectivities when applicable, using a chiral imidophosphorimidate (IDPi) as a catalyst.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China.
-cycloalkenes are abundant in bioactive natural products and have been used as powerful tools in chemical biology and drug discovery. However, strategies for the modular synthesis of -cycloalkenes, especially planar-chiral medium-sized ones, with high efficiency and selectivity, still remain elusive. Herein, we report a Pd-catalyzed asymmetric [7 + 2] cyclization strategy to address this challenge.
View Article and Find Full Text PDFPLoS One
January 2025
Intensive Care Unit, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China.
Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.
Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.
PLoS One
January 2025
Department of Plant Protection, IPB University, Bogor, Indonesia.
Smallholder farmers produce over 40% of global palm oil, the world's most traded and controversial vegetable oil. Awareness of the effects of palm oil production on ecosystems and human communities has increased drastically in recent years, with ever louder calls for the private and public sector to develop programs to support sustainable cultivation by smallholder farmers. To effectively influence smallholder practices and ensure positive social outcomes, such schemes must consider the variety in perspectives of farmers and align with their priorities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!