Diastereo- and Enantioselective Synthesis of Fluorine Motifs with Two Contiguous Stereogenic Centers.

J Am Chem Soc

Department of Organic Chemistry , Stockholm University, Svante Arrhenius väg 16C , SE-10691 Stockholm , Sweden.

Published: October 2018

The synthesis of chiral fluorine containing motifs, in particular, chiral fluorine molecules with two contiguous stereogenic centers, has attracted much interest in research due to the limited number of methods available for their preparation. Herein, we report an atom-economical and highly stereoselective synthesis of chiral fluorine molecules with two contiguous stereogenic centers via azabicyclo iridium-oxazoline-phosphine-catalyzed hydrogenation of readily available vinyl fluorides. Various aromatic, aliphatic, and heterocyclic systems with a variety of functional groups were found to be compatible with the reaction and provide the highly desirable product as single diastereomers with excellent enantioselectivities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b08778DOI Listing

Publication Analysis

Top Keywords

contiguous stereogenic
12
stereogenic centers
12
chiral fluorine
12
fluorine motifs
8
synthesis chiral
8
fluorine molecules
8
molecules contiguous
8
diastereo- enantioselective
4
enantioselective synthesis
4
fluorine
4

Similar Publications

The first asymmetric total synthesis of the tetraterpenoid (+)-7,7'-bistaxodione () via a unique late-stage electrochemical oxidative dimerization of a diterpenoid quinone methide tumor Inhibitor (+)-taxodione () has been described. The naturally occurring monomer was synthesized from aromatic abietane diterpenoid, ferruginol (1e) . Further, an efficient convergent synthetic route toward the naturally occurring aromatic abietane terpenoids has been shown via a Lewis acid-mediated diastereoselective cationic epoxy-ene cyclization.

View Article and Find Full Text PDF

Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good -dominated geometry under mild reaction conditions.

View Article and Find Full Text PDF

Total syntheses of the parvistemoline alkaloids enabled by stereocontrolled Ir/Pd-catalyzed allylic alkylation.

Nat Commun

December 2024

Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.

The functionalized polycycle with densely contiguous tertiary stereocenters is a formidable challenge in synthesizing the parvistemoline family of Stemona alkaloids. We herein report their catalytic, asymmetric total syntheses in 13-14 steps from commercially available 2-(methoxycarbonyl)-pyrrole, featuring the development and deployment of an Ir/Pd-synergistically-catalyzed allylation of α-non-substituted keto esters with secondary aryl-substituted alcohols, stereodivergently accessible to four stereoisomers. Using chiral Pd-enolate and Ir π-allyl complex under neutral conditions, no epimerization occurs.

View Article and Find Full Text PDF

Asymmetric Synthesis of Optically Active Pyrazolidines or Pyrazoline Derivatives via Ni(II)-Bipyridine-,'-dioxide Complexes.

Org Lett

January 2025

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, China.

Easily obtainable and efficient chiral -symmetric bipyridine-,'-dioxide ligands with Ni(OTf) were developed for application in catalyzing [3 + 2] cycloaddition reactions to synthesize optically active fused pyrazolidines or pyrazoline derivatives featuring three contiguous stereogenic centers by employing azomethine imines and α,β-unsaturated 2-acyl imidazoles, affording the corresponding adducts with the opposite configuration compared to previous synthetic products in 80-98% yields with 28-99% ee and >20:1 dr. In addition, subsequent amplification experiments and derivative transformations of the product further demonstrated the efficient catalytic performance of the catalyst Ni(II)-bipyridine-,'-dioxide complexes and the practicality of this synthesis methodology.

View Article and Find Full Text PDF

Natural product synthesis has been the prime focus for the development of new chemical transformations and the drug discovery. The dimeric and oligomeric hexahydropyrrolo[2,3-b]indole alkaloids represent a architecturally intriguing class of cyclotryptamine alkaloids. These alkaloids share contiguous stereogenic centers with vicinal all-carbon quaternary stereogenic centers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!