Self-labelling protein tags with fluorogenic probes serve as great fluorescence imaging tools to understand key questions of protein dynamics and functions in living cells. In the present study, we report a SNAP-tag fluorogenic probe 4c mimicking the chromophore of the red fluorescent protein Kaede. The molecular rotor properties of 4c were utilized as a fluorogenic probe for SNAP-tag, such that conjugation with SNAPf protein leads to inhibition of twisted intramolecular charge transfer, triggering fluorogenecity. Upon conjugation with SNAPf, 4c exhibited approximately a 90-fold enhancement in fluorescence intensity with fast labelling kinetics (k2 = 15 000 M-1 s-1). Biochemical and spectroscopic studies confirmed that fluorescence requires formation of folded SNAPf·4c covalent conjugate between Cys 145 and 4c. Confocal microscopy and flow cytometry showed that 4c is capable of detecting SNAPf proteins or SNAPf fused with a protein of interest in living cells. This work provides a framework to develop the large family of FP chromophores into fluorogenic probes for self-labelling protein tags.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8ob01483c | DOI Listing |
Anal Chem
January 2025
Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.
Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFBMC Chem
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
An ecofriendly, effective, and selective spectrofluorimetric approach for natamycin analysis was developed using fluorescamine as a fluorogenic probe. Natamycin is the only topical ocular antifungal medication that is presently on the market for treating keratitis, conjunctivitis, and blepharitis caused by yeast and other fungi. Owing to its primary aliphatic amino group, natamycin can easily interact with fluorescamine resulting in the formation of the highly fluorescent diaryl pyrrolone derivative.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Biopharmacy, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950, Lublin, Poland. Electronic address:
Background: The human gut microbiota plays a crucial role in various aspects of health, extending beyond digestion and nutrient absorption. Ganoderma lucidum (Reishi) and Hericium erinaceus (Lion's Mane), traditional medicinal mushrooms, have garnered interest due to their potential to exert positive health effects. The aim of our study was to investigate the molecular impact of Reishi and Lion's Mane on mood regulation through the gut-brain axis.
View Article and Find Full Text PDFChembiochem
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
Bacterial infections, particularly those caused by drug-resistant bacteria, represent a pressing global health challenge. During the interaction between pathogen infection and host defense, bacterial infections initiate the host's immune response, which involves the activation of proteases that play a critical role in antibacterial defense. Granzyme B (GzmB), a key immune-related biomarker associated with cytotoxic T lymphocytes (CTLs), plays a pivotal role in this process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!