A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Large-scale purification of recombinant hepatitis B surface antigen from Pichia pastoris with non-affinity chromatographic methods as a substitute to immunoaffinity chromatography. | LitMetric

The costly media, inconsistent ligand density, ligand leakage, and possible destabilization of recombinant hepatitis B surface antigen (rHBsAg) particles are main drawbacks of using immunoaffinity chromatography (IAF) in the large-scale downstream processing. In this study, we aimed to use an efficient large-scale purification system as an alternative purification method for immunoaffinity chromatography. For this purpose, we suggested integrating non-affinity chromatographic methods of hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) for cost-effective purification of rHBsAg expressed in P. pastoris. The optimization of such process is not trivial and straightforward since diverse molecular characteristics of expressed rHBsAg in each type of host cell cause different interactions in non-affinity chromatography processes. The working buffer composition and chromatography parameters are the most influential factors in hydrophobic interaction chromatography. The best result for lab-scale HIC was achieved by using ammonium sulfate buffer in 10% of saturation concentration in pH 7.0 with Butyl-S Sepharose 6 Fast Flow medium and with subsequent Tween-100 and urea elution. In this process, the recovery, purity, and total yield were about 84%, 82%, and 69%, respectively. By scaling-up the HIC and integrating it with Sephacryl S-400 SEC, we obtained highly pure, i.e., > 90%, rHBsAg virus-like particles (VLP).

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2018.1487854DOI Listing

Publication Analysis

Top Keywords

immunoaffinity chromatography
12
large-scale purification
8
recombinant hepatitis
8
hepatitis surface
8
surface antigen
8
non-affinity chromatographic
8
chromatographic methods
8
chromatography
8
hydrophobic interaction
8
interaction chromatography
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!