Overconsumption of a diet rich in fat and carbohydrates, called the Western diet, is a major contributor to the global epidemic of cardiovascular disease. Despite previously documented cardiovascular protection exhibited in female rats, this safeguard may be lost under certain metabolic stressors. We hypothesized that female Wistar rats challenged by a Western diet composed of 21% fat and 50% carbohydrate (34.1% sucrose) for 17 wk would develop endothelial dysfunction via endothelial Toll-like receptor 4 (TLR4) signaling. Western diet-fed female rats exhibited dysregulation of metabolism, revealing increased body weight and abdominal fat, decreased expression of adiponectin in white adipose tissue, glucose intolerance, and impaired insulin sensitivity. Western diet exposure increased hepatic triglycerides and cholesterol alongside hepatic steatosis, categorizing nonalcoholic fatty liver disease. Moreover, a Western diet negatively affected vascular function, revealing hypertension, impaired endothelium-dependent vasorelaxation, aortic remodeling, and increased reactive oxygen species (ROS) production. Aortic protein expression of TLR4 and its downstream proteins were markedly increased in the Western diet-fed group in association with elevated serum levels of free fatty acids. In vitro experiments were conducted to test whether free fatty acids contribute to vascular ROS overproduction via the TLR4 signaling pathway. Cultured endothelial cells were stimulated with palmitate in the presence of TAK-242, a TLR4 signaling inhibitor. Palmitate-induced overgeneration of ROS in endothelial cells was abolished in the presence of TAK-242. Our data show that a Western diet induced endothelial dysfunction in female rats and suggest that endothelial TLR4 signaling may play a key role in abolishing female cardiovascular protection. NEW & NOTEWORTHY A Western diet induced elevated levels of free fatty acids, produced nonalcoholic fatty liver disease, and provoked endothelial dysfunction in female rats in association with Toll-like receptor 4 signaling-mediated vascular reactive oxygen species production. Limited consumption of a Western diet in premenopausal women may decrease their risk of cardiovascular complications.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.00218.2018DOI Listing

Publication Analysis

Top Keywords

western diet
32
endothelial dysfunction
16
female rats
16
tlr4 signaling
16
toll-like receptor
12
dysfunction female
12
free fatty
12
fatty acids
12
western
10
endothelial
8

Similar Publications

Dietary Influences on Gut Microbiota and Their Role in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD).

Nutrients

December 2024

Department of Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 720229 Suceava, Romania.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major contributor to liver-related morbidity, cardiovascular disease, and metabolic complications. Lifestyle interventions, including diet and exercise, are first line in treating MASLD. Dietary approaches such as the low-glycemic-index Mediterranean diet, the ketogenic diet, intermittent fasting, and high fiber diets have demonstrated potential in addressing the metabolic dysfunction underlying this condition.

View Article and Find Full Text PDF

High-Fat Diet, Epigenetics, and Atherosclerosis: A Narrative Review.

Nutrients

December 2024

Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA.

Background/objectives: Atherosclerosis is a chronic inflammatory disease developing and progressing in the presence of risk factors including hyperlipidemia, hypercholesterolemia, and chronic inflammation, among others. Atherosclerosis commonly precipitates as ischemic events, transient ischemic attacks, and myocardial infarction. Saturated fatty acids are risk factors; however, their association with epigenetics in the pathophysiology of atherosclerosis is not clearly understood.

View Article and Find Full Text PDF

Introduction: Copper is an essential trace element crucial for enzyme synthesis and metabolism. Adequate copper levels are beneficial for maintaining the normal immune function of the spleen. Copper deficiency disrupts the metabolic processes within the spleen and impairs its immune function.

View Article and Find Full Text PDF

Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.

View Article and Find Full Text PDF

L11 and LR: Ameliorate Obesity via AMPK Pathway.

Nutrients

December 2024

Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Objectives: The purpose of this study was to find the potential mechanism of two Lactobacillus ( L11 and LR) on ameliorating obesity, including lipid metabolism and gut microbiota. The two isolates have been studied to have good characterization in vitro, but in vivo studies in modulating lipid metabolism and gut microbiota were not studied.

Methods: In this study, mice with HFD supplemented with L11 or LR exhibited slower obesity progression, including reduced weight gain, abdominal fat accumulation, liver damage, inflammation, and adipose lesions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!