Theoretical Prediction of the Creation and Observation of a Ghost Trilobite Chemical Bond.

Phys Rev Lett

Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA.

Published: September 2018

The "trilobite"-type of molecule, predicted in 2000 and observed experimentally in 2015, arises when a Rydberg electron exerts a weak attractive force on a neutral ground state atom. Such molecules have bond lengths exceeding 100 nm. The ultralong-range chemical bond between the two atoms is a nonperturbative linear combination of the many degenerate electronic states associated with high principal quantum numbers, and the resulting electron probability distribution closely resembles a fossil trilobite from antiquity. We show how to coherently engineer this same long-range orbital through a sequence of electric and magnetic field pulses even when the ground-state atom is not present and propose several methods to observe the resulting orbital. The existence of such a ghost chemical bond in which an electron reaches out from one atom to a nonexistent second atom is a consequence of the high level degeneracy.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.113203DOI Listing

Publication Analysis

Top Keywords

chemical bond
12
theoretical prediction
4
prediction creation
4
creation observation
4
observation ghost
4
ghost trilobite
4
trilobite chemical
4
bond
4
bond "trilobite"-type
4
"trilobite"-type molecule
4

Similar Publications

Structural, thermal, and dynamic properties of four deep eutectic solvents comprising choline chloride paired with phenolic derivative hydrogen-bond donors were probed using experiments and molecular simulations. The hydrogen-bond donors include phenol, catechol, -chlorophenol, and o-cresol, in a 3:1 mixture with the hydrogen-bond acceptor choline chloride. Density, viscosity, and pulsed-field gradient NMR diffusivity measurements were conducted over a range of temperatures.

View Article and Find Full Text PDF

A novel regioselective manganese(III)-mediated radical cascade cyclization of N-propargyl enamides with various H-phosphine oxides, H-phosphinates and H-phosphonates was developed. Mechanistic studies show that the reaction is mainly composed of the selective addition of phosphonyl radical to C≡C bond and the intramolecular 6--trig cyclization of vinyl radical. Utilizing this protocol, we successfully synthesized a diverse range of 3-phosphorylpyridines in high efficiency with good functional group compatibility and simple operation.

View Article and Find Full Text PDF

Visual detection of kanamycin with functionalized Au nanoparticles.

Mikrochim Acta

January 2025

Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.

A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.

View Article and Find Full Text PDF

Coupling-Induced Dynamic Off-Centering of Cu Drives High Thermoelectric Performance in TlCuS.

J Am Chem Soc

January 2025

New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Jakkur P.O. 560064, India.

Seeking new and efficient thermoelectric materials requires a detailed comprehension of chemical bonding and structure in solids at microscopic levels, which dictates their intriguing physical and chemical properties. Herein, we investigate the influence of local structural distortion on the thermoelectric properties of TlCuS, a layered metal sulfide featuring edge-shared Cu-S tetrahedra within CuS layers. While powder X-ray diffraction suggests average crystallographic symmetry with no distortion in CuS tetrahedra, the synchrotron X-ray pair distribution function experiment exposes concealed local symmetry breaking, with dynamic off-centering distortions of the CuS tetrahedra.

View Article and Find Full Text PDF

Improved birefringence, given its capacity to modulate polarized light, holds a lively role in the optoelectronic industry. Traditionally, alkaline-earth metal halides have possessed low birefringence due to their nearly optical isotropic properties. Herein, the substitution of interlayer anion with linear S─S unit that meticulously engineered by reduced valence state and strong covalent bond is integrated into the optically isotropic BaF, offering the new salt-inclusion chalcogenide BaFS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!