Stress Biomarkers in Biological Fluids and Their Point-of-Use Detection.

ACS Sens

Nanoelectronics Laboratory , University of Cincinnati, Cincinnati , Ohio 45221-0030 , United States.

Published: October 2018

Hormones produced by glands in the endocrine system and neurotransmitters produced by the nervous system control many bodily functions. The concentrations of these molecules in the body are an indication of its state, hence the use of the term biomarker. Excess concentrations of biomarkers, such as cortisol, serotonin, epinephrine, and dopamine, are released by the body in response to a variety of conditions, for example, emotional state (euphoria, stress) and disease. The development of simple, low-cost modalities for point-of-use (PoU) measurements of biomarkers levels in various bodily fluids (blood, urine, sweat, saliva) as opposed to conventional hospital or lab settings is receiving increasing attention. This paper starts with a review of the basic properties of 12 primary stress-induced biomarkers: origin in the body (i.e., if they are produced as hormones, neurotransmitters, or both), chemical composition, molecular weight (small/medium size molecules and polymers, ranging from ∼100 Da to ∼100 kDa), and hydro- or lipophilic nature. Next is presented a detailed review of the published literature regarding the concentration of these biomarkers found in several bodily fluids that can serve as the medium for determination of the condition of the subject: blood, urine, saliva, sweat, and, to a lesser degree, interstitial tissue fluid. The concentration of various biomarkers in most fluids covers a range of 5-6 orders of magnitude, from hundreds of nanograms per milliliter (∼1 μM) down to a few picograms per milliliter (sub-1 pM). Mechanisms and materials for point-of-use biomarker sensors are summarized, and key properties are reviewed. Next, selected methods for detecting these biomarkers are reviewed, including antibody- and aptamer-based colorimetric assays and electrochemical and optical detection. Illustrative examples from the literature are discussed for each key sensor approach. Finally, the review outlines key challenges of the field and provides a look ahead to future prospects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.8b00726DOI Listing

Publication Analysis

Top Keywords

bodily fluids
8
blood urine
8
concentration biomarkers
8
biomarkers
6
stress biomarkers
4
biomarkers biological
4
fluids
4
biological fluids
4
fluids point-of-use
4
point-of-use detection
4

Similar Publications

Background: For people receiving haemodialysis, a balance has to be struck between removing sufficient but not too much fluid during a treatment session and maintaining any remaining kidney function they might have. In the BISTRO trial, this study sought to establish if getting the balance right might be improved by the additional use of bioimpedance, a device that measures body fluid composition to help decide how much fluid to remove during dialysis. Designing and executing this trial, which incorporated complex and repeated trial procedures that would be dependent on participant engagement, presented challenges that demanded effective public and patient involvement.

View Article and Find Full Text PDF

Advances in adhesion of microneedles for bioengineering.

J Mater Chem B

January 2025

School of Chemistry and Biological Engineering, Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China.

Microneedles have provided promising platforms in various fields thanks to their safety, painlessness, minimal invasiveness and ease of operation. The excellent adhesion of microneedles is the key characteristic to achieve long-term and comfortable treatment. However, a complex environment, such as the roughness of skin, various bodily fluids , and the movement of the body, presents great challenges to the adhesion characteristics of microneedles.

View Article and Find Full Text PDF

: Caries or iatrogenic thermal trauma of the teeth have a significant impact on the dental pulp structure connected with stimulation of angiogenesis and lymphangiogenesis. Therefore, the aim of the study was to identify the difference in the rate of heat dissipation by vessels present in the dental pulp. : Freshly extracted healthy ( = 10) and carious ( = 14) molars and premolars were cut on a diamond saw and subjected to active thermographic examination and then subjected to lymphoscintigraphy and X-ray examination.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!