Routine large-scale xenotransplantation from pigs to humans is getting closer to clinical reality owing to several state-of-the-art technologies, especially the ability to rapidly engineer genetically defined pigs. However, using pig organs in humans poses risks including unwanted cross-species transfer of viruses and adaption of these pig viruses to the human organ recipient. Recent developments in the field of virology, including the advent of metagenomic techniques to characterize entire viromes, have led to the identification of a plethora of viruses in many niches. Single-stranded DNA (ssDNA) viruses are the largest group prevalent in virome studies in mammals. Specifically, the ssDNA viral genomes are characterized by a high rate of nucleotide substitution, which confers a proclivity to adapt to new hosts and cross-species barriers. Pig-associated ssDNA viruses include torque teno sus viruses (TTSuV) in the Anelloviridae family, porcine parvoviruses (PPV), and porcine bocaviruses (PBoV) both in the family of Parvoviridae, and porcine circoviruses (PCV) in the Circoviridae family, some of which have been confirmed to be pathogenic to pigs. The risks of these viruses for the human recipient during xenotransplantation procedures are relatively unknown. Based on the scant knowledge available on the prevalence, predilection, and pathogenicity of pig-associated ssDNA viruses, careful screening and monitoring are required. In the case of positive identification, risk assessments and strategies to eliminate these viruses in xenotransplantation pig stock may be needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120555 | PMC |
http://dx.doi.org/10.1111/xen.12453 | DOI Listing |
Sci Rep
January 2025
Institute for Biosecurity and Microbial Forensics (IBMF), Oklahoma State University, Stillwater, OK, USA.
Exclusion is a keystone of integrated pest management to prevent the introduction of pathogens. U.S.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.
Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.
View Article and Find Full Text PDFPLoS One
January 2025
Entomology & Biothreat Management Division, Defense Research Laboratory (DRL-DRDO), Tezpur, Assam, India.
Cotton leaf curl disease (CLCuD) is a major constraint for production of cotton (Gossypium sp.) in Northwest India. CLCuD is caused by a monopartite, circular ssDNA virus belonging to the genus Begomovirus in association with betasatellites and alphasatellites, and ttransmitted by a whitefly vector (Bemisia tabaci).
View Article and Find Full Text PDFViruses
November 2024
Department of Biochemistry and Molecular Biology, College of Medicine Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL 32610-0245, USA.
are ssDNA plant viruses whose control has both economical and agricultural importance. Their capsids assemble into two distinct architectural forms: (i) a T = 1 icosahedral and (ii) a unique twinned quasi-isometric capsid. Described here are the high-resolution structures of both forms of the maize streak virus using cryo-EM.
View Article and Find Full Text PDFCancer continues to represent a substantial burden in terms of its morbidity and mortality, underscoring the imperative for the development of novel and efficacious treatment modalities. Recent advances in cancer immunotherapy have highlighted the importance of identifying tumour-specific antigens, which can assist the immune system in targeting malignant cells effectively. Phage display technology has emerged as an effective tool for the discovery of novel antigens through cDNA library screening, representing a significant advancement in the field of immunological research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!