A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automatic segmentation of abnormal capillary nonperfusion regions in optical coherence tomography angiography images using marker-controlled watershed algorithm. | LitMetric

Diabetic retinopathy (DR) is one of the most complications of diabetes. It is a progressive disease leading to significant vision loss in the patients. Abnormal capillary nonperfusion (CNP) regions are one of the important characteristics of DR increasing with its progression. Therefore, automatic segmentation and quantification of abnormal CNP regions can be helpful to monitor the patient's treatment process. We propose an automatic method for segmentation of abnormal CNP regions on the superficial and deep capillary plexuses of optical coherence tomography angiography (OCTA) images using the marker-controlled watershed algorithm. The proposed method has three main steps. In the first step, original images are enhanced using the vesselness filter and then foreground and background marker images are computed. In the second step, abnormal CNP region candidates are segmented using the marker-controlled watershed algorithm, and in the third step, the candidates are modeled using an undirected weighted graph and finally, by applying merging and removing procedures correct abnormal CNP regions are identified. The proposed method was evaluated on a dataset with 36 normal and diabetic subjects using the ground truth obtained by two observers. The results show the proposed method outperformed some of the state-of-the-art methods on the superficial and deep capillary plexuses according to the most important metrics.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.JBO.23.9.096006DOI Listing

Publication Analysis

Top Keywords

cnp regions
16
abnormal cnp
16
marker-controlled watershed
12
watershed algorithm
12
proposed method
12
automatic segmentation
8
segmentation abnormal
8
abnormal capillary
8
capillary nonperfusion
8
optical coherence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!