A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural stability and electronic properties of alkaline-earth metal induced Si(111)-(3 × 2) surfaces. | LitMetric

Structural stability and electronic properties of alkaline-earth metal induced Si(111)-(3 × 2) surfaces.

Phys Chem Chem Phys

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

Published: October 2018

Alkaline-earth metal (Ca, Sr, and Ba) induced Si(111)-(3 × 2) honeycomb chain-channel (HCC) surfaces have been systematically studied by means of ab initio calculations. The large adsorption energy and anisotropic diffusion energy barriers ensure the high structural stability of the one-dimensional HCC structure. Electronic band structures and band-decomposed charge density distributions reveal that the first conduction band and the third valence band level are contributed by the surface Si and metal atoms, while the top first and second valence bands are caused by the bulk silicon atoms. These results identify a larger surface band gap of 1.65-1.68 eV and provide an excellent explanation for the recent experimental observations of a band gap of 1.7 eV for the Sr/Si(111)-(3 × 2) HCC surface.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cp04323jDOI Listing

Publication Analysis

Top Keywords

structural stability
8
alkaline-earth metal
8
metal induced
8
induced si111-3
8
band gap
8
band
5
stability electronic
4
electronic properties
4
properties alkaline-earth
4
si111-3 surfaces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!