This study aimed to evaluate the oils of soybean (S), papaya (Pa) and melon (Me) seeds and compounds oils SPa (80:20 w/w); SMe (80:20 w/w); and SPaMe (60:20:20 w/w/w) subjected to thermoxidation. Compound oils showed lower percentages of free fatty acids in relation to others, after 20 h. With the heating process, there was an increase in the quantity of saturated and monounsaturated acids. The quantity of carotenoids decreased, except in papaya seed oil that presented significant amount of carotenoids in 20 h. In relation the tocopherols, highlighted the presence of γ-tocopherol, except in the papaya oil. In 20 h, SMe and SPa still showed high amounts of tocopherols, with 76 and 85% of retention, respectively. With the thermoxidation, the amounts of phytosterols decreased. A great potential can be verified for the use of papaya and melon seed oils, in order to increase the oxidative stability of the soybean oil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6085266 | PMC |
http://dx.doi.org/10.1007/s10068-018-0325-1 | DOI Listing |
Heliyon
January 2025
Department of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Ethiopia.
Many approaches have been implemented in order to reduce the emissions of particular pollutants without compromising engine performance. Cotton and castor mixed seed oil was chosen for the current study due to their distinct fatty acid composition and potential as a feedstock for bio-additives. Three fuel samples-99 % diesel and 1 % blended fuel (cottonseed oil + castor seed oil), 99.
View Article and Find Full Text PDFSci Rep
January 2025
School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
A nanoemulsion was fabricated from Cananga odorata essential oil (EO) and stabilized by incorporation of Tween 80 using ultrasonication. The major constituents of the EO were benzyl benzoate, linalool, and phenylmethyl ester. Differing sonication amplitude (20-60%) and time (2-10 min) were assessed for effects on nanoemulsion droplet size and polydispersity index (PI).
View Article and Find Full Text PDFPlant Physiol
January 2025
Group of Biochemistry and Cell Signalling in Nitric Oxide, University Institute for Research in Olive Groves and Olive Oils, Department of Experimental Biology, Faculty of Experimental Sciences, Campus "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain.
-Nitro-fatty acids (NO2-FAs) have emerged as key components of nitric oxide (NO) signalling in eukaryotes. We previously described how nitro-linolenic acid (NO2-Ln), the major NO2-FA detected in plants, regulates S-nitrosoglutathione (GSNO) levels in Arabidopsis (Arabidopsis thaliana). However, the underlying molecular mechanisms remain undefined.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, 17 Novembra 1, 08001 Prešov, Slovakia.
Weeds cause a decrease in the quantity and quality of agricultural production and economic damage to producers. The prolonged use of synthetic pesticides causes problems of environmental pollution, the possible alteration of agricultural products and problems for human health. For this reason, the scientific community's search for products of natural origin, which are biodegradable, safe for human health and can act as valid alternatives to traditional herbicides, is growing.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemical Technology, University of Plovdiv 'Paisii Hilendarski', 24 Tzar Assen Street, 4000 Plovdiv, Bulgaria.
The genus Amsonia, a member of the Apocynaceae family, comprises plants with notable medicinal benefits. In 2022 and 2023, Walt. seeds introduced to Bulgaria were collected and analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!